Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- P. U. Jepsen, D. G. Cooke, and M. Koch, "Terahertz spectroscopy and imaging - Modern techniques and applications," Laser Photon. Rev. 5, 124-166 (2011). https://doi.org/10.1002/lpor.201000011
- M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007). https://doi.org/10.1038/nphoton.2007.3
- H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, "Terahertz spectroscopy and imaging for defense and security applications," Proc. IEEE 95, 1514-1527 (2007).
-
N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, "Tunable continuous-wave terahertz generation/detection with compact 1.55
${\mu}m$ detuned dual-mode laser diode and InGaAs based photomixer," Opt. Express 19, 15397-15403 (2011). https://doi.org/10.1364/OE.19.015397 - S.-P. Han, N. Kim, H. Ko, H.-C. Ryu, J.-W. Park, Y.-J. Yoon, J.-H. Shin, D. H. Lee, S.-H. Park, S.-H. Moon, S.-W. Choi, H. S. Chun, and K. H. Park, "Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection," Opt. Express 20, 18432-18439 (2012). https://doi.org/10.1364/OE.20.018432
-
H.-C. Ryu, N. Kim, S.-P. Han, H. Ko, J.-W. Park, K. Moon, and K. H. Park, "Simple and cost-effective thickness measurement terahertz system based on a compact 1.55
${\mu}m$ ${\lambda}/4$ phase-shifted dual-mode laser," Opt. Express 20, 25990-25999 (2012). https://doi.org/10.1364/OE.20.025990 - J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with negative refractive index," Nature 455, 376-379 (2008). https://doi.org/10.1038/nature07247
- D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-979 (2006). https://doi.org/10.1126/science.1133628
- G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006). https://doi.org/10.1126/science.1126021
- M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature 470, 369-373 (2011). https://doi.org/10.1038/nature09776
- H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006). https://doi.org/10.1038/nature05343
- R. Yan, B. S. Rodriguez, L. Liu, D. Jena, and H. G. Xing, "A new class of electrically tunable metamaterial terahertz modulators," Opt. Express 20, 28664-28671 (2012). https://doi.org/10.1364/OE.20.028664
- Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, "Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method," Opt. Express 22, 11070-11076 (2014). https://doi.org/10.1364/OE.22.011070
-
P. U. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, "Metal-insulator phase transition in a
$VO_2$ thin film observed with terahertz spectroscopy," Phys. Rev. B 74, 205103 (2006). https://doi.org/10.1103/PhysRevB.74.205103 - P. Mandal, A. Speck, C. Ko, and S. Ramanathan, "Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition," Opt. Lett. 36, 1927-1929 (2011). https://doi.org/10.1364/OL.36.001927
-
Y. G. Jeong, H. Bernien, J. S. Kyoung, H. R. Park, H. S. Kim, J. W. Choi, B. J. Kim, H. T. Kim, K. J. Ahn, and D. S. Kim, "Electrical control of terahertz nano antennas on
$VO_2$ thin film," Opt. Express 19, 21211-21215 (2011). https://doi.org/10.1364/OE.19.021211 - D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, "Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide," Phys. Rev. Lett. 99, 226401 (2007). https://doi.org/10.1103/PhysRevLett.99.226401
- Q. Y. Wen, H. W. Zhang, Q. H. Yang, Z. Chen, Y. Long, Y. L. Jing, Y. Lin, and P. X. Zhang, "A tunable hybrid metamaterial absorber based on vanadium oxide films," J. Phys. D 45, 235106 (2012). https://doi.org/10.1088/0022-3727/45/23/235106
-
M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. D. Ventra, and D. N. Basov, "Reconfigureablegraidient index using
$VO_2$ memory metamaterials," Appl. Phys. Lett. 99, 044103 (2011). https://doi.org/10.1063/1.3615804 - J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Zing, and W. Zhang, "A close-ring pair terahertz metamaterial resonating at normal incidence," Opt. Express 17, 20307-20312 (2009). https://doi.org/10.1364/OE.17.020307
- Z. Hao, M. C. Martin, B. Hartenenck, S. Cabrini, and E. H. Anderson, "Negative index of refraction observed in a single layer of closed ring magnetic dipole resonators," Appl. Phys. Lett. 91, 253119 (2007). https://doi.org/10.1063/1.2825468
- S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, "Tunable DFB laser with a striped thin-film heater," IEEE Photon. Technol. Lett. 4, 321-323 (1992). https://doi.org/10.1109/68.127200
- F. Fan, W.-H. Gu, S. Chen, X.-H. Wang, and S.-J. Chang, "State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping," Opt. Lett. 38, 1582-1584 (2013). https://doi.org/10.1364/OL.38.001582
- M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, "Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial," Nature 487, 345-348 (2012). https://doi.org/10.1038/nature11231
Cited by
- vol.26, pp.13, 2018, https://doi.org/10.1364/OE.26.017397