DOI QR코드

DOI QR Code

The Impact of the Argument-based Modeling Strategy using Scientific Writing implemented in Middle School Science

중학교 과학수업에 적용한 글쓰기를 활용한 논의-기반 모델링 전략의 효과

  • Received : 2014.07.23
  • Accepted : 2014.08.25
  • Published : 2014.09.30

Abstract

The purpose of this study is to investigate the impact of argument-based modeling strategy using scientific writing on student's modeling ability. For this study, 66 students (three classes) from the 7th grade were selected and of these, 43 students (two classes) were assigned to two experimental groups while the other 23 students (one class) were assigned to comparative group. In the experimental groups, one group (22 students) was Argument-based multimodal Representation and Modeling (AbRM), and the other group (21 students) was Argument-based Modeling (AbM). Modeling ability consisted of identifying the problem, structuring of scientific concepts, adequacy of claim and evidence and index of multimodal representation. As for the modeling ability, AbRM group scored significantly higher than the other groups, AbM group was significantly higher than comparative group. The four sub-elements of modeling ability in the AbRM group was significantly higher than the other groups statistically and AbM group scored significantly higher than comparative group. From these results, the argument-based modeling strategy using scientific writing was effective on students' modeling ability. Students organized or expressed the model and evaluated or modified it through the process of argument-based modeling using scientific writing and the exchange of opinions with others by scientific language as argument and writing.

이 연구는 글쓰기를 활용한 논의-기반 모델링 전략이 학생들의 모델링 능력에 미치는 영향을 알아보는 것을 목적으로 하였다. 또한 논의-기반 모델링 전략에서 다중표상의 적용여부가 학생들의 모델링 능력에 미치는 효과를 비교하였다. 이를 위해 남녀공학 중학교 1학년 세 개 학급(66명) 중 두 개 학급(43명)은 실험집단으로, 한 개 학급(23명)은 비교집단으로 선정하였다. 논의-기반 모델링 전략을 적용한 두 개 실험집단 중에서 한 개 학급은 AbRM집단(Argument-based multimodal Representation and Modeling, 논의-기반 다중표상 및 모델링 집단, 22명), 다른 한 개 학급은 AbM집단(Argument-based Modeling, 논의-기반 모델링 집단, 21명), 나머지 한 개 학급은 비교집단(23명)으로 선정하였다. 논의-기반 모델링 전략은 인지 과정, 해석 과정, 적용과정으로 구성되어 있다. 실험집단은 논의-기반 모델링 전략의 인지과정과 해석 과정을 공통적으로 수행하고 적용 과정에서 차이를 두었다. AbRM집단은 논의-기반 다중표상 및 모델링을 적용하였고, AbM 집단은 논의-기반 모델링을 적용했으며, 비교집단은 전통적 수업방식을 적용하였다. 논의-기반 모델링 전략이 학생들의 모델링 능력에 미치는 영향을 분석한 결과, AbRM집단의 경우 통합적 모델링 수준에서 다른 두 집단보다 통계적으로 유의미하게 높았고, AbM집단은 비교집단보다 유의미하게 높았다. 모델링 능력 검사의 하위요소인 문제인식, 과학개념 구조화, 주장-증거 적절성, 다중표상 지수에서 AbRM집단의 경우 모든 하위요소에서 AbM집단과 비교집단 보다 통계적으로 유의미하게 높았으며, 그 다음으로 AbM집단이 비교집단 보다 통계적으로 유의미하게 높았다. 이러한 결과로부터 논의-기반 모델링 전략은 모델링의 목적인 의사소통을 위해 자신이 만든 모델을 논의와 글쓰기를 통해 과학적 언어를 사용하여 스스로 정리하거나 표현하고, 다른 사람의 의견을 듣고 교환하는 과정을 통해 모델을 평가하고 수정하는 일련의 과정을 통해서 학생들의 모델링 능력의 향상에 효과적임을 보여주었다.

Keywords

References

  1. Bybee, R. W. (2011). Scientific and engineering practices in K-12 classrooms: Understanding a framework for K-12 science education. Science and Children, 49(4), 10-16.
  2. Davenport, T. H., & Prusak, L. (1997). Working knowledge: How organizations manage what the know. Boston, MA: Harvard business school press.
  3. Duschl, R. A., Ellenbogen, K., & Erduran, S. (1999). Promoting argumentation in middle school science students: A Project SEPIA evaluation. In Paper presented at the annual meeting of the National Association for Research in Science Teaching (NARST), Boston.
  4. Greca, I. M., & Moreira, M. A. (2002). Mental, physical, and mathematical models in the teaching and learning of Physics. Science Education, 85(6), 106-121.
  5. Giere, R., Bickle, J., & Mauldin, R. (2006). Understanding scientific reasoning. London: Thomson Learning.
  6. Gilbert, J. K., Boulter, C. J., & Rutherford, M. (2000). Explanations with models in science education. Developing Models in Science Education. Dordrecht, The Netherlands: Kluwer.
  7. Haack, S. (2003). Defending science-within reason: Between scientism and cynicism. Amherst, NY: Prometheus Books.
  8. Hand, B., Choi, A., Greenbowe, T., Schroeder, J., & Bennett, W. (2008). Examining the impact of student use of multiple-mode representations in constructing science arguments. annual international conference of national association for research in science teaching. Baltimore, MD.
  9. Hand, B., Wallace, C., & Yang, E. (2004). Using a Science Writing Heuristic to enhance learning outcomes from laboratory activities in seventh-grade science: Quantitative and qualitative aspects. International Journal of Science Education, 26(2), 131-149. https://doi.org/10.1080/0950069032000070252
  10. Halloun, I. A. (1996). Schematic Modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1-26.
  11. Kang, I. A. (1997). A brief reflection on cognitive and social constructivism. Journal of Educational Technology, 11(2). 3-20.
  12. Kelly, G. J., & Takao A. (2001). Epistemic levels in argument: an analysis of university oceanography students' use of evidence in writing. Science Education, 86(3), 314-342.
  13. Kelly, G. J., Bazerman, C., Skukauakaite, A., & Prothero, W. (2002). Rhetorical features of student science writing in introductory university oceanography (pp. 265-282). Routledge, NY: New York Publisher.
  14. Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96(4), 674-689. https://doi.org/10.1037/0033-295X.96.4.674
  15. Laubichler, M. & Muuller, G. (2007). Modeling biology: structures, behaviors, evolution. Cambridge, MA: MIT.
  16. Lederman, N. G. (2007). Nature of science: Past, present and future. In S. K. Abell & N. G. Lederman, (Eds.), Handbook of research on science education (pp. 831-880). Lawrence Erlbaum Associates, Inc., Publisher.
  17. Lee, J. S. (2002). Principles and methods of teaching writing; Process-oriented approach. Seoul: Teaching the history of science Publishers.
  18. Lee, K. N. (2007). Effects of constructivistic learning strategy on middle school students' learning of scientific conception learning and scientific attitudes: Focused on science writing (Doctoral dissertation). Chonbuk National University, Korea.
  19. Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy: Supporting development in learning in contexts. In W. Damon, R. M. Lerner, K. A. Renninger, & I. E. Sigel (Eds.), Handbook of child psychology, (6th ed., Vol. 4). Hoboken, NJ: John Wiley and Sons.
  20. Lemke, J. L. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. Martin & R. Veel (Eds.), Reading science: Critical and functional perspectives on of science (pp. 87-113). London: Routledge.
  21. Magnani, L., & Nersessian, N. (2002). Model-based reasoning: Science, technology, values. New York, NY: Kluwer Academic Publishers.
  22. Ministry Of Education. (2012). 2009 Revised national curriculum. MOE, Notice No. 2011-2361.
  23. Morgan, M., & Morrison, M. (1999). Models as mediators. Perspectives on natural and social sciences. Cambridge: Cambridge University Press.
  24. Nam, J. H., Kwak, K. H., Jang, K. H., & Hand, B. (2008). The implementation of argumentation using Science Writing Heuristic (SWH) in Middle School Science. Journal of the Korean Association for Research in Science Education, 28(8), 922-936.
  25. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020. https://doi.org/10.1002/tea.20035
  26. Owens, C. V. (2000). Teachers' responses to science writing. Teaching and learning-grand forks-, 15(1), 22-35.
  27. Pineda, L., & Garza, G. (2000). A model for multimodal reference resolution. Computational Linguistics, 26(2), 139-193. https://doi.org/10.1162/089120100561665
  28. Romberg, T., Carpenter, T., & Kwako, J. (2005). Standards based reform and teaching for understanding. In T. Romberg, T. Carpenter, & F. Dremock (Eds.), Understanding mathematics and science matters (pp. 3-26). Mahwah, NJ: Erlbaum.
  29. Sarah, K. B., & Lance, J. R. (2000). Explanation and evidence in informal argument. Cognitive Science, 24(4), 573-604. https://doi.org/10.1207/s15516709cog2404_2
  30. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for science modeling: making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  31. Seigel, H. (1988). Education reason: Rationality, critical thinking and education. London: Routledge.
  32. Sins, P. H. M., Savelsbergh, E. R., & van Joolingen, W. R. (2005). The difficult process of scientific modelling: An analysis of novices' reasoning during computer-based modelling. International Journal of Science Education, 27(14), 1695-1721. https://doi.org/10.1080/09500690500206408
  33. Suckling, C. J., Suckling, K. E., & Suckling, C. W. (1978). Chemistry through models. Concepts and applications of modeling in chemical science, technology and industry. Cambridge: Cambridge University Press.
  34. Windschitl M., Thompson J., & Braaten M., (2008). Beyond the scientific method: Model-Based Inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20259
  35. Yore, L. D., Bisanz, G. L., & Hand, B. M. (2003). Examining the literacy component of science literacy: 25 years of language arts and science research. International Journal of Science Education, 25(6), 689-725. https://doi.org/10.1080/09500690305018

Cited by

  1. Investigating the Cognitive Process of a Student's Modeling on a Modeling-Emphasized Argument-Based General Chemistry Experiment vol.35, pp.2, 2015, https://doi.org/10.14697/jkase.2015.35.2.0313
  2. Impact of Peer Assessment Activities on High School Student's Argumentation in Argument-Based Inquiry vol.35, pp.3, 2015, https://doi.org/10.14697/jkase.2015.35.3.0353
  3. Narrative Characteristics in High School Students' Geological Field Trip Reports: the Relationship Between the Narrative Mode of Thought and the Academic Achievement vol.35, pp.4, 2015, https://doi.org/10.14697/jkase.2015.35.4.0735
  4. Analysis of Changes in Preservice Science Teachers’ Modeling Ability in Argument-based General Chemistry Laboratory Investigations vol.60, pp.4, 2016, https://doi.org/10.5012/jkcs.2016.60.4.276
  5. Analysis of Activities in Chemistry Chapters of Middle School Science Textbooks for the 2009 Revised Science Curriculum: Focus on 8 Science Practices vol.60, pp.6, 2016, https://doi.org/10.5012/jkcs.2016.60.6.436
  6. A Study of Preliminary Biology Teachers’Scientific Inquiry Skills and LogicalThinking Ability through the Activity of Science Writing vol.44, pp.1, 2014, https://doi.org/10.15717/bioedu.2016.44.1.114
  7. 물질의 입자성에 대한 모형 구성 과정에서 나타나는 소집단 토론과 전체 학급 토론의 특징 vol.36, pp.3, 2016, https://doi.org/10.14697/jkase.2016.36.3.0361
  8. 과학교육에서 모델 및 모델링에 대한 고찰 -메타모델링 지식을 중심으로- vol.37, pp.2, 2014, https://doi.org/10.14697/jkase.2017.37.2.0239
  9. 과학적 모형의 사회적 구성에서 스마트기기의 역할 모색 vol.37, pp.5, 2014, https://doi.org/10.14697/jkase.2017.37.5.813
  10. 2015 개정 과학과 교육과정에 제시된 중학교 1학년 성취기준과 과학 1 교과서에 포함된 활동과 평가 문항 분석: 과학과 핵심역량 중심으로 vol.63, pp.3, 2014, https://doi.org/10.5012/jkcs.2019.63.3.196