DOI QR코드

DOI QR Code

An Enzyme-linked Immunosorbent Assay Strip Sensor for the Detection of Legionella Pneumophila

Legionella Pneumophila 검출을 위한 효소면역측정 스트립 센서

  • Kim, Young-Kee (Department of Chemical Engineering and Research Center for Chemical Technology, Hankyong National University) ;
  • Park, Sojung (Department of Chemical Engineering and Research Center for Chemical Technology, Hankyong National University)
  • 김영기 (한경대학교 화학공학과, 화학기술연구소) ;
  • 박소정 (한경대학교 화학공학과, 화학기술연구소)
  • Received : 2014.07.28
  • Accepted : 2014.08.29
  • Published : 2014.10.10

Abstract

In this study, an enzyme-linked immunosorbent assay (ELISA) and immuno-chromatographic technique were combined to fabricate immuno-strip sensors for the detection of Legionella pneumophila. The immuno-strip sensor was manufactured with four different membranes. A nitrocellulose membrane was used to immobilize capture antibody and generate signals due to the high affinity to antibodies, and glass fiber membranes were used as a conjugate release pad and a sample application pad. A cellulose membrane was used as an absorption pad to induce sample flow by the capillarity. Colorimetric signals produced by sandwich immuno-reaction and enzyme reaction could be analyzed qualitatively and quantitatively within 30 min. Under the given experimental conditions, sensor signals with L. pneumophila samples were observed qualitatively by naked eyes and measured quantitatively in a range of $1.3{\times}10^3-1.3{\times}10^6CFU/mL$ with a digital camera and home-made image analysis software.

본 연구에서는 효소면역 분석법(enzyme-linked immunosorbent assay)과 면역크로마토그래픽 기법을 결합하여 Legionella pneumophila 검출을 위한 면역스트립을 제작하였다. 면역스트립은 4종의 멤브레인을 이용하여 제작하였다. 니트로셀룰로오스 멤브레인은 포획항체를 고정화하여 신호 발생을 일으키기 위해 사용되었고, 두 종류의 유리섬유 멤브레인은 각각 중합체 패드와 시료주입 패드로 사용되었다. 셀룰로오스 멤브레인은 모세관 현상으로 시료흐름을 유도하는 흡수 패드로 이용하였다. 샌드위치 면역반응과 효소반응에 의해 30 min 이내에 생성된 발색신호는 정성 및 정량 분석이 가능하였다. 분석조건 하에서 육안에 의한 정성 검출뿐 아니라, $1.3{\times}10^3-1.3{\times}10^6CFU/mL$ 범위의 L. pneumophila 농도를 디지털카메라와 자체 제작된 소프트웨어를 이용하여 정량적으로 분석할 수 있었다.

Keywords

References

  1. S. J. Jeon, J. H. Jung, H. J. Seung, C. K. Kim, Y. H. Jin, Y. H. Oh, S. M. Choi, and Y. Z. Chae, Molecular epidemiology of Legionella pneumophila isolated from water supply systems in Seoul, Korea. J. Environ. Health. Sci., 39, 166-177 (2013). https://doi.org/10.5668/JEHS.2013.39.2.166
  2. Y.-G. Zo, Meta-analysis of risk factors for contamination of environmental waters by Legionella, Kor. J. Microbiol., 49, 424-428 (2013). https://doi.org/10.7845/kjm.2013.3089
  3. B. M. W. Diederen, Legionella spp. and Legionnaires' disease, J. Infect., 56, 1-12 (2008). https://doi.org/10.1016/j.jinf.2007.09.010
  4. Center for Disease Control and Prevention Korea, Guideline for management of Legionnaires' disease, Osong, Korea (2012).
  5. Ministry of Environment Korea, Guideline for management of water quality in interactive waterscape facilities, Korea (2010).
  6. E. C. Alocilja and S. M. Radke, Market analysis of biosensors for food safety, Biosens. Bioelectron., 18, 841-846 (2003). https://doi.org/10.1016/S0956-5663(03)00009-5
  7. O. Lazcka, F. Javier Del Campo, and F. Xavier Munoz, Pathogen detection: A perspective of traditional methods and biosensors, Biosens. Bioelectron., 22, 1205-1217 (2007). https://doi.org/10.1016/j.bios.2006.06.036
  8. A. D. Taylor, J. Ladd, Q. Yu, S. Chen, J. Homola, and S. Jiang, Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor, Biosens. Bioelectron., 22, 752-758 (2006). https://doi.org/10.1016/j.bios.2006.03.012
  9. L. Yang and R. Bashir, Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria, Biotechnol. Adv., 26, 135-150 (2008). https://doi.org/10.1016/j.biotechadv.2007.10.003
  10. S. Kim, W.-S Jeong, and S.-H. Paeg, Development of DNA chromatographic system for on-site detection of food-contaminating bacteria, Korean J. Biotechnol. Bioeng., 18, 190-196 (2003).
  11. S. Ko and S. A. Grant, A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium, Biosens. Bioelectron., 21, 1283-1290 (2006). https://doi.org/10.1016/j.bios.2005.05.017
  12. C. Fernandez-Sanchez, C. J. Mcneil, K. Rawson, O. Nilsson, H. Y. Leung, and V. Gnanapragasam, One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum, J. Immunol. Methods, 307, 1-12 (2005). https://doi.org/10.1016/j.jim.2005.08.014
  13. K. Inoue, P. Ferrante, Y. Hirano, T. Yasukawa, H. Shiku, and T. Matsue, A competitive immunochromatographic assay for testosterone based on electrochemical detection, Talanta, 73, 886-892 (2007). https://doi.org/10.1016/j.talanta.2007.05.008
  14. J. Park, S. Park, and Y.-K. Kim, Multiplex detection of pathogens using an immunochromatographic assay strip, BioChip J., 4, 305-312 (2010). https://doi.org/10.1007/s13206-010-4407-2