DOI QR코드

DOI QR Code

Electrochemical Properties of Tobacco Peroxidase Incorporated Enzyme Electrode Bound with CSM Rubber

CSM 고무로 결합된 담배 과산화효소 고정 효소전극의 전기화학적 특성

  • 윤길중 (청주대학교 이공대학 응용화학과)
  • Received : 2014.04.29
  • Accepted : 2014.07.22
  • Published : 2014.10.10

Abstract

In order to substitute for the marketed horseradish peroxidase, a hydrogen peroxide sensor embedded with tobacco leaf in carbon pastes was constructed and its sensing ability was electrochemically evaluated. Ten and more electrode parameters obtained implied that the enzyme electrode exerts its remarkable specificity quantitatively in the experimental range of potential. Especially the small symmetry factor (${\alpha}$, 0.21) showed that the electrode kinetics is very sensitive to the change of electrode potential. The experimental facts above suggested that our enzyme electrode functions as a hydrogen peroxide sensor normally and tobacco peroxidase can be used in the place of the marketed one as an alternative to marketed ones.

시판 고추냉이 과산화효소를 대치하기 위하여 탄소반죽에 담배 잎을 고정시켜 과산화수소 감응 센서를 제작하고 그것의 감응성을 살펴보았다. 얻어진 10여 개 이상의 전극 파라미터는 효소전극이 실험 전위영역에서 정량적으로 특이성을 발휘하고 있음을 보여주었다. 특히 작은 대칭인자(${\alpha}$, 0.21)는 전극반응 속도가 전극전위의 변화에 매우 민감한 것을 보여주었다. 이런 실험적 사실들은 효소전극이 과산화수소 센서로서 정상적으로 기능을 발휘하고 있으며 담배 과산화효소가 시판 효소를 대체할 수 있음을 보여주는 것이었다.

Keywords

References

  1. E. Casero, M. Darder, F. Pariente, and E. Lorenzo, Peroxidase enzyme electrodes as nitric oxide biosensors, Anal. Chim. Acta, 403, 1-9 (2000). https://doi.org/10.1016/S0003-2670(99)00555-3
  2. B. Wang, J. Zhang, and S. Dong, Silica sol-gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor, Biosen. Bioelectronics, 15, 397-402 (2000). https://doi.org/10.1016/S0956-5663(00)00096-8
  3. Y. C. Li, W. F. Bu, L. X. Wu, and C. Q. Sun, A new amperometric sensor for the determination of bromate, iodate and hydrogen peroxide based on titania sol-gel matrix for immobilization of cobalt substituted Keggin-type cobalttungstate anion by vapor deposition method, Sens. Act. B, 107, 921-928 (2005). https://doi.org/10.1016/j.snb.2004.12.040
  4. T. J. Cheng, T. M. Lin, and H. C. Chang, Physical adsorption of protamine for heparin assay using a quartz crystal microbalance and electrochemical impedance spectroscopy, Anal. Chim. Acta, 462, 261-273 (2002). https://doi.org/10.1016/S0003-2670(02)00335-5
  5. H. Olschewski, A. Erlenkotter, C. Zaborosch, and G. C. Chemnitius, Screen-printed enzyme sensors for L-lysine determination, Em. Microbial Tech., 26, 537-543 (2000). https://doi.org/10.1016/S0141-0229(99)00192-1
  6. S. Gaspar, I. C. Popescu, I. G. Gazaryan, A. G. Bautista, I. Y. Sakharov, B. Mattisson, and E. Csoregi, Biosensors based on novel plant peroxidase: a comparative study, Electrochim. Acta, 46, 255-264 (2000). https://doi.org/10.1016/S0013-4686(00)00580-6
  7. K. J. Yoon, Electrochemical evaluation of a practical carbon paste electrode to determine hydrogen peroxide, Kor. J. Sci. Crin. Invest., 7, 195-200 (2013).
  8. K. J. Yoon, Application of pine peroxidase th the amperometric determination of hydrogen peroxidase, J. Kor. Chem. Soc., 57, 329-334 (2013). https://doi.org/10.5012/jkcs.2013.57.3.329
  9. K. B. Rhyu, Electrochemical kinetic assassment of rose tissue immobilized biosensor for the determination of hydrogen peroxide, Appl. Chem. Eng., 25, 107-112 (2014). https://doi.org/10.14478/ace.2013.1106
  10. J. R. Kirchner, Encyclopedia of Chemical Technology, Vol. 13, 12, Wiley-Interscience, NY, USA (1981).
  11. K. J. Yoon, S. Y. Pyun, and H. S. Kwon, Chicken Liver Tissue-Based Amperometric Biosensor for the determination of Hydrogen peroxide, J. Kor. Chem. Soc., 41, 343-350 (1997).
  12. W. Paik and S. M. Park, Electrochemistry, Science and technology of electrode processes, 1st ed., 52-55, Cheongmoongak, Korea (2001).
  13. J. A. Brydson, Rubbery Materials and their Compounds, 291, Elsevier Applied Science, NY, USA (1988).
  14. A. Mansouri, D. P. Makris, and P. Keflas, Determination of hydrogen peroxide scavenging activity of cinnamic and benzoic acids employing a highly sensitive peroxyoxalate chemiluminescence-based assay, J. Pham. Biomed. Anal., 39, 22-26 (2005). https://doi.org/10.1016/j.jpba.2005.03.044
  15. K. B. Rhyu and K. J. Yoon, Amperometric Kinetics of Hydrogen Peroxide Biosensor Bound with Natural Rubber, Appl. Chem. Eng., 21, 689-693 (2010).
  16. K. B. Rhyu and K. J. Yoon, Electrochemical kinetic analysis of the carbon paste enzyme electrode bound with rubber, Anal. Sci. & Tech., 24, 113-118 (2011). https://doi.org/10.5806/AST.2011.24.2.113
  17. K. B. Rhyu and K. J. Yoon, A new amperometric carbon paste biosensor Bound with chlorosulphonated polyethylene, J. Kor. Chem. Soc., 55, 323-327 (2011). https://doi.org/10.5012/jkcs.2011.55.2.323
  18. C. W. Lau, J. Z. Lu, and M. Kai, Chemiluminescence determination of tetracycline based on radical production in a basic acetonitrile-hydrogen peroxide reaction, Anal. Chim. Acta, 503, 235-239 (2004). https://doi.org/10.1016/j.aca.2003.10.035