References
- T. Nomura, N. Okinaka, and T. Akiyama, Impregnation of porous material with phase change material for thermal energy storage, Master. Chem. Phys., 115, 846-850 (2009). https://doi.org/10.1016/j.matchemphys.2009.02.045
- F. Frusteri, V. Leonardi, and G. Maggio, Numerical approach to describe the phase change of an inorganic PCM containing carbon fibers, Appl. Therm. Eng., 26, 1883-1892 (2006). https://doi.org/10.1016/j.applthermaleng.2006.01.018
- A. Karaipekli, A. Sari, and K. Kaygusuz, Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications, Renew. Energy, 32, 2201-2210 (2007). https://doi.org/10.1016/j.renene.2006.11.011
- S. Pincemin, R. Olives, X. Py, and M. Christ, Highly conductive composites made of phase change materials and graphite for thermal storage, Sol. Energy Mater. Sol. Cells, 92, 603-613 (2008). https://doi.org/10.1016/j.solmat.2007.11.010
- Y. J. Chen, D. D. Nguyen, M. Y. Shen, M. C. Yip, and N. H. Tai, Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites, Compos. A, 44, 40-46 (2013). https://doi.org/10.1016/j.compositesa.2012.08.010
-
D. Haillot, T. Bauer, U. Kroner, and R. Tamme, Thermal analysis of phase change materials in the temperature range
$120-150^{\circ}C$ , Thermochim. Acta, 513, 49-59 (2011). https://doi.org/10.1016/j.tca.2010.11.011 - F. Kang, Y. P. Zhang, H. N. Wang, Y. Nishi, and M. Inagaki, Effect of preparation conditions on the characteristics of exfoliated graphite, Carbon, 40, 1575-1581 (2002). https://doi.org/10.1016/S0008-6223(02)00023-4
- G. Chen, C. Wu, W. Weng, D. Wu, and W. Yan, Preparation of polystyrene/graphite nanosheet composite, Polymer, 44, 1781-1784 (2003). https://doi.org/10.1016/S0032-3861(03)00050-8
- P. M. Gilart, A. Y. Martinez, M. G. Barriuso, and C. M. Martinez, Development of PCM/carbon-based composite materials, Sol. Energy Mater. Sol. Cells, 107, 205-211 (2012). https://doi.org/10.1016/j.solmat.2012.06.014
- S. J. Park, K. S. Kim, and S. K. Hong, Preparation and thermal properties of polystyrene nanoparticles containing phase change materials as thermal storage medium, Polymer(Korea), 29, 8-13 (2005).
- S. W. Yim, J. H. Lee, Y. G. Lee, S. G. Lee, and S. R. Kim, Effect of the pressure on the interface and thermal conductivity of polypropylene-SiC composites, J. Adhes. Interface, 10, 30-34 (2009).
- J. H. Hong and S. E. Shim, Trends in development of thermal conductive polymer composites, Appl. Chem. Eng., 21, 115-128 (2010).
- W. L. Cheng, N. Liu, and W. F. Wu, Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity, Appl. Therm. Eng., 36, 345-352 (2012). https://doi.org/10.1016/j.applthermaleng.2011.10.046
- Z. Chen, F. Shan, L. Cao, and G. Fang, Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage, Sol. Energy Mater. Sol. Cells, 102, 131-136 (2012). https://doi.org/10.1016/j.solmat.2012.03.013
- M. Mehrali, S. T. Latibari, M. Mehrali, H. Metselaar, and M. Silakhori, Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite, Energy Convers. Manage., 67, 275-282 (2013). https://doi.org/10.1016/j.enconman.2012.11.023
- T. P. Teng, C. M. Cheng, and C. P. Cheng, Performance assessment of heat storage by phase change materials containing MWCNTs and graphite, Appl. Therm. Eng., 50, 637-644 (2013). https://doi.org/10.1016/j.applthermaleng.2012.07.002
- V. D. Bhatt, K. Gohil, and A. Mishra, Thermal energy storage capacity of some phase changing materials and ionic liquids, Int. J. Chemtech. Res., 2, 1771-1779 (2010).
- X. Xiao, P. Zhang, and M. Li, Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage, Energy Convers. Manage., 73, 86-94 (2013). https://doi.org/10.1016/j.enconman.2013.04.007
- F. Frusteri, V. Leonardi, S. Vasta, and G. Restuccia, Thermal conductivity measurement of a PCM based storage system containing carbon fibers, Appl. Therm. Eng., 25, 1623-1633 (2005). https://doi.org/10.1016/j.applthermaleng.2004.10.007
- S. Y. Lee, H. K. Shin, M. R. Park, K. Y. Rlee, and S. J. Park, Thermal characterization of erythritol/expanded graphite composites for high thermal storage capacity, Carbon, 68, 67-72 (2014). https://doi.org/10.1016/j.carbon.2013.09.053
- T. Oya, T. Nomura, M. Tsubota, and N. Okinaka, and T. Akiyama, Thermal conductivity enhancement of erythritol as PCM by sung graphite and nickel particles, Appl. Therm. Eng., 61, 825-828 (2013). https://doi.org/10.1016/j.applthermaleng.2012.05.033
- L. Xia, P. Zhang, and R. Z. Wang, Preparation and thermal characterization of expanded graphite/paraffin composite phase change material, Carbon, 48, 2538-2548 (2010). https://doi.org/10.1016/j.carbon.2010.03.030
- S. J. Park, K. S. Kim, and J. R. Lee, Thermal and mechanical interfacial properties of expanded graphite/epoxy composites, J. Korean Ind. Eng. Chem., 15, 493-498 (2004).
-
J. R. Choi, Y. S. Lee, and S. J. Park, Influence of electroless Ni-plated MWCNTs on thermal conductivity and fracture toughness of MWCNTs/
$Al_2O_3$ /epoxy composites, Polymer(Korea), 37, 449-454 (2013). https://doi.org/10.7317/pk.2013.37.4.449 - S. J. Park and K. S. Kim, A study on oil adsorption of expanded gaphites, Korean Chem. Eng. Res., 42, 362-367 (2004).
- S. M. Kim and L. T. Drzal, High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets, Sol. Energy Mater. Sol. Cells, 93, 136-142 (2009). https://doi.org/10.1016/j.solmat.2008.09.010
- D. H. Choi, J. H. Lee, H. R. Hong, and Y. T. Kang, Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application, Int. J. Refrigeration, 42, 112-120 (2014). https://doi.org/10.1016/j.ijrefrig.2014.02.004
- S. J. Park, K. S. Kim, and S. K. Hong, Preparation and characterization of expanded graphites by wet process, Hwahak Konghak, 41, 802-807 (2003).
- C. Wang, L. Feng, W. Li, J. Zheng, W. Tian, and X. Li, Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: The influence of the pore structure of the carbon materials, Sol. Energy Mater. Sol. Cells, 105, 21-26 (2012). https://doi.org/10.1016/j.solmat.2012.05.031
- A. Sari and A. Karaipekli, Fatty acid esters-based composite phase change materials for thermal energy storage in building, Appl. Therm. Eng., 37, 208-216 (2012). https://doi.org/10.1016/j.applthermaleng.2011.11.017
- T. Oya, T. Nomura, N. Okinaka, and T. Akiyama, Phase change composite based on porous nickel and erythritol, Appl. Therm. Eng., 40, 373-377 (2012). https://doi.org/10.1016/j.applthermaleng.2012.02.033
- J. S. Yu, A. Horibe, N. Haruki, and M. J. Kim, Melting & solidification characteristic on mixture of erythritol and mannitol of latent heat storage material, Trans. Korean Soc. Mech. Eng., 11, 807-812 (2012).
Cited by
- 팽창흑연을 사용한 복합재료의 난연 특성에 관한 연구 vol.32, pp.3, 2014, https://doi.org/10.14346/jkosos.2017.32.3.28
- Thermal Characteristics of Expandable Graphite–Wood Particle Composites vol.13, pp.12, 2014, https://doi.org/10.3390/ma13122732