DOI QR코드

DOI QR Code

A Study on Thermal Behaviors of Expanded Graphite/Erythritol Composites

팽창흑연/에리스리톨 복합체의 열적거동에 관한 연구

  • Choi, Bo-Kyung (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Choi, Woong-Ki (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Kuk, Yun-Su (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Kim, Hong-Gun (Department of Carbon Fusion Engineering, Jeonju University) ;
  • Seo, Min-Kang (R&D Division, Korea Institute of Carbon Convergence Technology)
  • Received : 2014.02.20
  • Accepted : 2014.09.12
  • Published : 2014.10.10

Abstract

In this paper, the thermal behaviors of expanded graphite(EG)/erythritol composites with different contents of EG were studied. The surface and structure properties of the composites were determined by using scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD), respectively. The thermal properties were investigated by differential scanning calorimetry (DSC) and thermal conductivity (TC). As experimental results, the thermal conductivity of the composites increased with increasing the EG content. However, the latent heat was somewhat decreased in the presence of EG. We could concluded that EG was highly promising materials for improving the heat transfer enhancement and energy storage capacity of phase change materials (PCMs).

본 연구에서는 팽창흑연의 함량 변화를 달리하여 제조한 팽창흑연/에리스리톨 복합체의 열적거동에 관하여 고찰하였다. 팽창흑연이 도입된 팽창흑연/에리스리톨 복합체의 표면 및 구조특성은 scanning electron microscope (SEM), transmission electron microscope (TEM), 그리고 X-ray diffraction (XRD)를 이용하여 관찰하였으며, 열적특성은 differential scanning calorimetry (DSC)와 thermal conductivity (TC)를 이용하여 분석하였다. 실험 결과 팽창흑연의 함량이 증가함에 따라 팽창흑연/에리스리톨 복합체의 열전도도가 증가하였으며, 반면에 잠열은 팽창흑연의 존재 하에 약간 감소하였다. 결론적으로 팽창흑연은 상변이 물질의 높은 열 전달성능 및 열 저장능력을 향상시키는데 적합한 소재라 판단된다.

Keywords

References

  1. T. Nomura, N. Okinaka, and T. Akiyama, Impregnation of porous material with phase change material for thermal energy storage, Master. Chem. Phys., 115, 846-850 (2009). https://doi.org/10.1016/j.matchemphys.2009.02.045
  2. F. Frusteri, V. Leonardi, and G. Maggio, Numerical approach to describe the phase change of an inorganic PCM containing carbon fibers, Appl. Therm. Eng., 26, 1883-1892 (2006). https://doi.org/10.1016/j.applthermaleng.2006.01.018
  3. A. Karaipekli, A. Sari, and K. Kaygusuz, Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications, Renew. Energy, 32, 2201-2210 (2007). https://doi.org/10.1016/j.renene.2006.11.011
  4. S. Pincemin, R. Olives, X. Py, and M. Christ, Highly conductive composites made of phase change materials and graphite for thermal storage, Sol. Energy Mater. Sol. Cells, 92, 603-613 (2008). https://doi.org/10.1016/j.solmat.2007.11.010
  5. Y. J. Chen, D. D. Nguyen, M. Y. Shen, M. C. Yip, and N. H. Tai, Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites, Compos. A, 44, 40-46 (2013). https://doi.org/10.1016/j.compositesa.2012.08.010
  6. D. Haillot, T. Bauer, U. Kroner, and R. Tamme, Thermal analysis of phase change materials in the temperature range $120-150^{\circ}C$, Thermochim. Acta, 513, 49-59 (2011). https://doi.org/10.1016/j.tca.2010.11.011
  7. F. Kang, Y. P. Zhang, H. N. Wang, Y. Nishi, and M. Inagaki, Effect of preparation conditions on the characteristics of exfoliated graphite, Carbon, 40, 1575-1581 (2002). https://doi.org/10.1016/S0008-6223(02)00023-4
  8. G. Chen, C. Wu, W. Weng, D. Wu, and W. Yan, Preparation of polystyrene/graphite nanosheet composite, Polymer, 44, 1781-1784 (2003). https://doi.org/10.1016/S0032-3861(03)00050-8
  9. P. M. Gilart, A. Y. Martinez, M. G. Barriuso, and C. M. Martinez, Development of PCM/carbon-based composite materials, Sol. Energy Mater. Sol. Cells, 107, 205-211 (2012). https://doi.org/10.1016/j.solmat.2012.06.014
  10. S. J. Park, K. S. Kim, and S. K. Hong, Preparation and thermal properties of polystyrene nanoparticles containing phase change materials as thermal storage medium, Polymer(Korea), 29, 8-13 (2005).
  11. S. W. Yim, J. H. Lee, Y. G. Lee, S. G. Lee, and S. R. Kim, Effect of the pressure on the interface and thermal conductivity of polypropylene-SiC composites, J. Adhes. Interface, 10, 30-34 (2009).
  12. J. H. Hong and S. E. Shim, Trends in development of thermal conductive polymer composites, Appl. Chem. Eng., 21, 115-128 (2010).
  13. W. L. Cheng, N. Liu, and W. F. Wu, Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity, Appl. Therm. Eng., 36, 345-352 (2012). https://doi.org/10.1016/j.applthermaleng.2011.10.046
  14. Z. Chen, F. Shan, L. Cao, and G. Fang, Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage, Sol. Energy Mater. Sol. Cells, 102, 131-136 (2012). https://doi.org/10.1016/j.solmat.2012.03.013
  15. M. Mehrali, S. T. Latibari, M. Mehrali, H. Metselaar, and M. Silakhori, Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite, Energy Convers. Manage., 67, 275-282 (2013). https://doi.org/10.1016/j.enconman.2012.11.023
  16. T. P. Teng, C. M. Cheng, and C. P. Cheng, Performance assessment of heat storage by phase change materials containing MWCNTs and graphite, Appl. Therm. Eng., 50, 637-644 (2013). https://doi.org/10.1016/j.applthermaleng.2012.07.002
  17. V. D. Bhatt, K. Gohil, and A. Mishra, Thermal energy storage capacity of some phase changing materials and ionic liquids, Int. J. Chemtech. Res., 2, 1771-1779 (2010).
  18. X. Xiao, P. Zhang, and M. Li, Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage, Energy Convers. Manage., 73, 86-94 (2013). https://doi.org/10.1016/j.enconman.2013.04.007
  19. F. Frusteri, V. Leonardi, S. Vasta, and G. Restuccia, Thermal conductivity measurement of a PCM based storage system containing carbon fibers, Appl. Therm. Eng., 25, 1623-1633 (2005). https://doi.org/10.1016/j.applthermaleng.2004.10.007
  20. S. Y. Lee, H. K. Shin, M. R. Park, K. Y. Rlee, and S. J. Park, Thermal characterization of erythritol/expanded graphite composites for high thermal storage capacity, Carbon, 68, 67-72 (2014). https://doi.org/10.1016/j.carbon.2013.09.053
  21. T. Oya, T. Nomura, M. Tsubota, and N. Okinaka, and T. Akiyama, Thermal conductivity enhancement of erythritol as PCM by sung graphite and nickel particles, Appl. Therm. Eng., 61, 825-828 (2013). https://doi.org/10.1016/j.applthermaleng.2012.05.033
  22. L. Xia, P. Zhang, and R. Z. Wang, Preparation and thermal characterization of expanded graphite/paraffin composite phase change material, Carbon, 48, 2538-2548 (2010). https://doi.org/10.1016/j.carbon.2010.03.030
  23. S. J. Park, K. S. Kim, and J. R. Lee, Thermal and mechanical interfacial properties of expanded graphite/epoxy composites, J. Korean Ind. Eng. Chem., 15, 493-498 (2004).
  24. J. R. Choi, Y. S. Lee, and S. J. Park, Influence of electroless Ni-plated MWCNTs on thermal conductivity and fracture toughness of MWCNTs/$Al_2O_3$/epoxy composites, Polymer(Korea), 37, 449-454 (2013). https://doi.org/10.7317/pk.2013.37.4.449
  25. S. J. Park and K. S. Kim, A study on oil adsorption of expanded gaphites, Korean Chem. Eng. Res., 42, 362-367 (2004).
  26. S. M. Kim and L. T. Drzal, High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets, Sol. Energy Mater. Sol. Cells, 93, 136-142 (2009). https://doi.org/10.1016/j.solmat.2008.09.010
  27. D. H. Choi, J. H. Lee, H. R. Hong, and Y. T. Kang, Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application, Int. J. Refrigeration, 42, 112-120 (2014). https://doi.org/10.1016/j.ijrefrig.2014.02.004
  28. S. J. Park, K. S. Kim, and S. K. Hong, Preparation and characterization of expanded graphites by wet process, Hwahak Konghak, 41, 802-807 (2003).
  29. C. Wang, L. Feng, W. Li, J. Zheng, W. Tian, and X. Li, Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: The influence of the pore structure of the carbon materials, Sol. Energy Mater. Sol. Cells, 105, 21-26 (2012). https://doi.org/10.1016/j.solmat.2012.05.031
  30. A. Sari and A. Karaipekli, Fatty acid esters-based composite phase change materials for thermal energy storage in building, Appl. Therm. Eng., 37, 208-216 (2012). https://doi.org/10.1016/j.applthermaleng.2011.11.017
  31. T. Oya, T. Nomura, N. Okinaka, and T. Akiyama, Phase change composite based on porous nickel and erythritol, Appl. Therm. Eng., 40, 373-377 (2012). https://doi.org/10.1016/j.applthermaleng.2012.02.033
  32. J. S. Yu, A. Horibe, N. Haruki, and M. J. Kim, Melting & solidification characteristic on mixture of erythritol and mannitol of latent heat storage material, Trans. Korean Soc. Mech. Eng., 11, 807-812 (2012).

Cited by

  1. 팽창흑연을 사용한 복합재료의 난연 특성에 관한 연구 vol.32, pp.3, 2014, https://doi.org/10.14346/jkosos.2017.32.3.28
  2. Thermal Characteristics of Expandable Graphite–Wood Particle Composites vol.13, pp.12, 2014, https://doi.org/10.3390/ma13122732