DOI QR코드

DOI QR Code

Effect of alumina coating on the Pull-in Voltage in Electrostatically actuated micro device

알루미나 코팅이 정전기적 구동의 마이크로 소자의 풀 인 전압에 미치는 영향

  • Park, Hyun-Sik (Department of Electrical, Electronic and Control Engineering, Graduate School of Future Convergence Technology, Institute for information technology convergence, Hankyong National University)
  • 박현식 (한경대학교 전기전자제어공학과, 미래융합기술대학원, IT융합기술연구소)
  • Received : 2014.05.27
  • Accepted : 2014.09.11
  • Published : 2014.09.30

Abstract

Electrostatically-actuated Micro device have been used widely in a variety of integrated sensors and actuators. Electrostatically-actuated micro devices with a gap of several micrometers or less between the electrodes have shown failure problems by electrostatic adhesion. To improve this adhesion phenomenon, micro devices of varying lengths and widths in electrodes were fabricated, and an alumina coating was then deposited using atomic layer deposition technology. The effects of improving adhesion phenomenon were compared by measuring the pull-in voltage before and after the coating process. The pull-in voltage increased with increasing length of the upper electrode after the coating. An increase in the electrode area results in an increase in the pull-in voltage after coating. The alumina coating method applied to improve the adhesion on an electrostatically-actuated micro device was observed as an effective method.

정전기적으로 구동되는 마이크로 소자는 센서 및 엑츄에이터 산업 분야에서 널리 활용되고 있다. 정전기적으로 구동되는 마이크로 소자 구조체는 수 마이크로미터 이하의 전극 사이 간격으로서 정전기적인 부착 현상에 의한 고장이 발생 한다. 본 연구에서는 마이크로 소자의 부착 현상을 개선하기위하여 전극의 길이와 면적을 달리한 마이크로 소자의 구조체를 제작하고, 원자 층 증착방법에 의한 알루미나 코팅 전과 후의 마이크로 소자의 풀인 전압(pull-in voltage)을 측정 비교 분석 하였다. 마이크로 소자의 상부 전극 길이 변화에서는 알루미나 코팅 후에 풀인 전압의 상승이 관찰되었고 전극면적이 클수록 풀인 전압 상승이 관찰되었다. 정전기적으로 구동되는 마이크로 소자의 부착 현상을 개선하기위한 방안으로 본 연구에서 적용된 알루미나 코팅 방법은 효과적인 방법이다.

Keywords

References

  1. Jeffry J. Sniegowski, "Multi level polyslicon surface micromachining technology applications and issues', ASME 1996 International Mechanical Engineering Congress and Exposition, November 17-22, Atlanta, GA, pp.1-10, 1996.
  2. C.L.Goldssmith, S. Eshelman, "Performance of low loss RF MEMS capacitive switches", IEEE microwave and guided wave letters, vol 8, no8, pp.269-271,1998. DOI: http://dx.doi.org/10.1109/75.704410
  3. Brian McCarthy, George G. Adams, Nicol E. McGruer, "A dynamic Model, including contact bounce, of an electrostatically actuated microswitch", J. of microelectromechanical systems, Vol.11, No.3, pp 276-283,2002. DOI: http://dx.doi.org/10.1109/JMEMS.2002.1007406
  4. Ndreas Kaiser, "The potential of MEMS components for re configurable RF interfaces in mobile communication terminals", Solid-State Circuits Conference, 2001. ESSCIRC 2001. Proceedings of the 27th European,18-20 Sept. pp.25-28, 2001.
  5. C.H. Mastrangelo, "Adhesion related failure mechanism in microelectromechanical systems," trib.lett., vol.3, pp.223-238, 1997. https://doi.org/10.1023/A:1019133222401
  6. Roya Maboudian, Roger T. Howe, "Critical review : adhesion in surface micromechanical structures", J. Vac.Sci. Techol. B 15(1) pp.1-19,1997. DOI: http://dx.doi.org/10.1116/1.589247
  7. M.P.de Boer, T.A. Michalske, "Accurate method for determing adhesion of cantilever beam", Journal of applied physics, 86, 2, pp.817-827, 1999. DOI: http://dx.doi.org/10.1063/1.370809
  8. W.M.van Spengen, R. Puers and I de Wolf, "A physical model to predict stiction in MEMS", J. Micromech. Microeng, 12 pp.702-713,2002. DOI: http://dx.doi.org/10.1088/0960-1317/12/5/329
  9. W. R. Ashurst, C.Yau, C.Carraro,R. Maboudian and M.T.Dugger, "Dichlorodimethysilane as an Anti stiction monolayer for mems", Journal of microelectromechanical systems, vol.10, no.1, pp.41-49, 2001. DOI: http://dx.doi.org/10.1109/84.911090
  10. K.Kukli, "Atomic layer deposotion of $Al_2O_3$ based on annolayered dielectrics", Journal of Non-crystalline Solids, 303, pp.35-39, 2002. DOI: http://dx.doi.org/10.1016/S0022-3093(02)00961-4
  11. S.J.Yun, "Dependence of atomic layer-deposited Al2O3 films characteristics on growth temperature and Al precursors of Al(CH3)3 and AlCl3", J.Vac.Sci.. Tech.A 15,(6) pp.2993-2997,1997. DOI: http://dx.doi.org/10.1116/1.580895
  12. J.B.Muldavin, G.M.Rebeiz, "30GHz tuned mems switches", 1999 IEEE MTT-S digest TH2B-2 pp.1511- 1514,1999.
  13. P.M.Osterberg and S. D. Senturia, "A test chip for MEMS material property measurement using electrostatically actuated test structures, Journal of microelectromechanical systems", vol 6, no 2, pp.107-118, 1997. DOI: http://dx.doi.org/10.1109/84.585788
  14. J.M.Bustillo,R.T.Howe and R.S.Muller, "Surface micromaching for microelectromechanical systems", proceedings of the IEEE,vol 86, No. 8, pp.1552-1574,1998. https://doi.org/10.1109/5.704260
  15. S lucas, K Kis-Sion, J Pinel and O Bonnaud, "Polysilicon cantilever beam using surface micromaching technology for application in microswitches", J. Micromech. Microeng., 7,pp. 159-161,1997. DOI: http://dx.doi.org/10.1088/0960-1317/7/3/021
  16. Sazzadur Chowdhury, M.Ahmadi, W.C.Miller, "A comparison of pull-in voltage calculation methods for MEMS-based electrostatic actuator design", 1st international conference on sensing technology, pp. 112-117, Nov.2005.
  17. Yuh-chung Hu, "Closed form solutions for the pull-in voltage of micro curled beams subjected to electrostatic loads", J. Micromech.Microeng.,16 pp.648-655, 2006. DOI: http://dx.doi.org/10.1088/0960-1317/16/3/021