References
- J. H. Kim, J. K. Lee, H. K. Ha, C. S. Seo, H. Y. Lee, D. Y. Jung, N. H. Lee, J. A. Lee, D. S. Huang, H. K. Shin, Analysis of Studies on Samul-tang for Fundamental Estabishment of Evidence Based Medicine. Korea J. Oriental Physiology & Pathology, Vol.23, No.4, pp.779-788, 2009.
- H. S. So, J. Oh, Y. T. Chung, Y. J. Moon, D. H. Kim, B. S. Moon, H. S. Lee, S. W. Baek, C. Park, Y. S. Lim, M. S. Kim, R. Park, The water extract of Samultang protects the lipopolysaccharide (LPS)/phorbol 12-myristate 13-acetate (PMA)-induced damage and nitric oxide production of C6 glial cells via down-regulation of NF-kappaB. Gen Pharmacol, Vol.34, No.5, pp.303-10, 2000. DOI: http://dx.doi.org/10.1016/S0306-3623(00)00073-2
- E. K. Kim, E. Y. Kim, H. S. Lee, H. S. Jung, S. K. Park, Y. J. Sohn, N. W. Sohn, Effect of Samul-tang on the allergic inflammatory Response. Korea J. Oriental Physiology & Pathology, Vol.21, No.3, pp.617-625, 2007.
- M. A. ChoI, M. L. Kim, C. S. Park, The Antibacterial and Antioxidative Activities of Samultang Ingredient Extracts, KOREAN J. FOOD COOKERY SCI, Vol.24, No.1 pp.52-58, 2008.
- Y. K. Kim, K. Y. Hyun, M. H. Jo, B. M. Jin, M. K. Lee, Effects of Samultang in Formalin-induced Orofacial Pain. Journal of Korean Society of Oral Health Science, Vol.1, No.1, pp.117-125, 2013. DOI: http://dx.doi.org/10.5668/JEHS.2013.39.2.117
- E. Herlaar, Z. Brown, p38 MAPK signalling cascades in inflammatory disease. Mol Med Today, Vol.5, No.10 pp.439-47, 1999. DOI: http://dx.doi.org/10.1016/S1357-4310(99)01544-0
- R. R. Ji, M. R. Suter, p38 MAPK microglial signaling and neuropathic pain. Mol Pain, Vol.3, No.33, pp.1-9, 2007. https://doi.org/10.1186/1744-8069-3-1
- F. Ma, L. Zhang, D. Lyons, K. N. Westlund, Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC) of the infraorbital nerve. Molecular Brain, Vol.5, No.44, 2012.
- K. A. Won, Y. M. Kang, M. K. Lee, M. K. Park, J. S. Ju, Y. C. Bae, D. K. Ahn, Participation of microglial p38 MAPK in formalin-induced temporomandibular joint nociception in rats. J Orofac Pain, Vol.26, No.2, pp.132-41, 2012.
- A. Fugen, iNOS-mediated nitric oxide production and its regulation. Life Sci, Vol.75, No.6 pp.639-53, 2004. DOI: http://dx.doi.org/10.1016/j.lfs.2003.10.042
- M. G. Osborne, T. J. Coderre, Effects of intrathecal administration of nitric oxide synthase inhibitors on carrageenan-induced thermal hyperalgesia. Br J Pharmacol, Vol.126, No.8 pp.1840-6, 1999. DOI: http://dx.doi.org/10.1038/sj.bjp.0702508
- A. J. De, N. M. Clayton, S. D. Collins, P. Colthup, I. Chessell, R. G. Knowles, GW274150, a novel and highly selective inhibitor of the inducible isoform of nitric oxide synthase (iNOS), shows analgesic effects in rat models of inflammatory and neuropathic pain. Pain, Vol.120, No.1-2, pp.170-81, 2006. DOI: http://dx.doi.org/10.1016/j.pain.2005.10.028
- I. Takac, K. Schroder, L. Zhang, B. Lardy, N. Anilkumar, J. D. Lambeth, A. M. Shah, F. Morel, R. P. Brandes, The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem, Vol.286, No.15, pp.13304-13, 2011. DOI: http://dx.doi.org/10.1074/jbc.M110.192138
- K. A. Radermacher, K. Wingler, P. Kleikers, S. Altenhofer, J. J. Hermans, C. Kleinschnitz, S. H. Hhw, The 1027th target candidate in stroke: Will NADPH oxidase hold up?. Exp Transl Stroke Med, Vol.4, No.1, pp.1-11, 2012. DOI: http://dx.doi.org/10.1186/2040-7378-4-11
- M. K. Park, M. G. Seong, M. K. Lee, Effects of TRPV1 in formalin-induced nociceptive behavior in the orofacial area of rats. The Korea Academia-Industrial cooperation Society, Vol. 15, No.1, pp.316-322, 2014. https://doi.org/10.5762/KAIS.2014.15.1.316
- Y. Sohn, H. S. Lee, H. J. Park, H. Lee, H. Lee, H. Choi, C. H. Jeong, Y. Bu, H. S. Jung, Angelicae Gigantis Radix regulates mast cell-mediated allergic inflammation in vivo and in vitro. Food Chem Toxicol, Vol.50, No.9, pp.2987-995, 2012. DOI: http://dx.doi.org/10.1016/j.fct.2012.06.001
- M. C. Kim, C. H. Lee, T. H. Yook, Effects of anti-inflammatory and Rehmanniae radix pharmacopuncture on atopic dermatitis in NC/Nga mice. J Acupunct Meridian Stud, Vol.6, No.2, pp.98-109, 2013. DOI: http://dx.doi.org/10.1016/j.jams.2012.10.007
- H. Y. Kim, Y. M. Han, Anti-inflammatory Effect of Paeoniflorigenone Isolated from Paeoniae Radix. Yakhak Hoeji, Vol.56, No.1, pp.20-25, 2012.
- S. K. Cho, O. l. Kwon, C. J. Kim, Anti-inflammatory and Analgesic Activities of the Extracts and Fractions of cnidii Rhizoma. Kor. J. Pharmacogn, Vol.27, No.3, pp.282-287, 1996.
- X. Y. Chen, K. Li, A. R. Light, K. Y. Fu, Simvastatin attenuates formalin-induced nociceptive behaviors by inhibiting microglial RhoA and p38 MAPK activation. J Pain, Vol. 14, No.311, pp.1310-9, 2013. DOI: http://dx.doi.org/10.1016/j.jpain.2013.05.011
- C. I. Svensson, M. Marsala, A. Westerlund, N. A. Calcutt, W. M. Campana, J. D. Freshwater, R. Catalano, Y. Feng, A. A. Protter, B. Scott, T. L. Yaksh, Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem, Vol.6 No.6, pp.1534-44, 2003. DOI: http://dx.doi.org/10.1046/j.1471-4159.2003.01969.x
- K. Li, T. Lin, Y. Cao, A. R. Light, K. Y. Fu, Peripheral formalin injury induces 2 stages of microglial activation in the spinal cord. J Pain, Vol.11, No.11, pp.1056-65, 2010. DOI: http://dx.doi.org/10.1016/j.jpain.2010.01.268
- S. Y. Kwon, J. H. Yeom, J. D. Joo, Ketamine reduces the induced spinal p38 MAPK and pro-inflammatory cytokines in a neuropathic rats. Korean J Anesthesiol, Vol. 66, No.1, pp.52-8, 2014. DOI: http://dx.doi.org/10.4097/kjae.2014.66.1.52
-
K. Y. Su, C. Y. Yu, Y. P. Chen, K. F. Hua, Y. L. Chen, 3,4-Dihydroxytoluene, a metabolite of rutin, inhibits inflammatory responses in lipopolysaccharide-activated macrophages by reducing the activation of NF-
$\kappa$ B signaling. BMC Complement Altern Med, Vol.14, No.21. 2014. - A. Feng, G. Zhou, X. Yuan, X. Huang, Z. Zhang, T. Zhang, Inhibitory effect of baicalin on iNOS and NO expression in intestinal mucosa of rats with acute endotoxemia. PLoS One, Vol.8, No.12, 2013. DOI: http://dx.doi.org/10.1371/journal.pone.0080997
- A. S. More, R. R. Kumari, G. Gupta, M. C. Lingaraju, V. Balaganur, N. N. Pathak, D. Kumar, D. Kumar, A. K. Sharma, S. K. Tandan, Effect of iNOS inhibitor S-methylisothiourea inmonosodium iodoacetate-induced osteoathritic pain: implication for osteoarthritis therapy. Pharmacol Biochem Behav, Vol.103, No.4, pp. 764-72. 2013. DOI: http://dx.doi.org/10.1016/j.pbb.2012.12.013
- C. Park, J. H. Lee, S. H. Lee, Protective Effect of Samul against Cisplatin in Primary Rat Organ of Corti Explant. Korean J. Oriental Physiology & Pathology, Vol.21, No.1, pp. 214-218, 2007.
- J. Kuroda, T. Ago, S. Matsushima, P. Zhai, M. D. Schneider, J. Sadoshima, NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A, Vol.107, No.35, pp.15565-70, 2010. DOI: http://dx.doi.org/10.1073/pnas.1002178107
- Y. S. Gwak, S. E. Hassler, C. E. Hulsebosch, Reactive oxygen species contribute to neuropathic pain and locomotor dysfunction via activation of CamKII in remote segments following spinal cord contusion injury in rats. Pain, Vol.154, No.9, pp.1699-708, 2013. DOI: http://dx.doi.org/10.1016/j.pain.2013.05.018
- W. Kallenborn-Gerhardt, K. Schroder, T. D. Del, R. Lu, K. Kynast, J. Kosowski, E. Niederberger, A. M. Shah, R. P. Brandes, G. Geisslinger, A. Schmidtko, NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J Neurosci, Vol.32, No.30, pp.10136-45, 2012. DOI: http://dx.doi.org/10.1523/JNEUROSCI.6227-11.2012
- H. Kobayashi, S. Chattopadhyay, K. Kato, J. Dolkas, S. Kikuchi, R. R. Myers, V. I. Shubayev, MMPs initiate Schwann cell-mediated MBP degradation and mechanical nociception after nerve damage. Mol Cell Neurosci, Vol.39, No.4, pp.619-27, 2008. DOI: http://dx.doi.org/10.1016/j.mcn.2008.08.008
- K. Lee, Y. S. Kim, H. Y. Ryu, H. K. Jo, J. J. An, U. K. Namgung, I. C. Seol, Regulatory Effects of Samultang on Axonal Recovery after Spinal Cord Injury in Rats. Oriental Physiology & Pathology, Vol. 20, No.5, pp.1303-1310, 2006.