DOI QR코드

DOI QR Code

Probing of Surface Potential Using Atomic Force Microscopy

  • Kwon, Owoong (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Yunseok (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • Received : 2014.09.17
  • Accepted : 2014.09.24
  • Published : 2014.09.30

Abstract

As decreasing device size, probing of nanoscale surface properties becomes more significant. In particular, nanoscale probing of surface potential has paid much attention for understanding various surface phenomena. In this article, we review different atomic force microscopy techniques, including electrostatic force microscopy and Kelvin probe force microscopy, for measuring surface potential at the nanoscale. The review could provide fundamental information on the probing method of surface potential using atomic force microscopy.

Keywords

References

  1. Coffey D C and Ginger D S (2006) Time-resolved electrostatic force microscopy of polymer solar cells. Nat. Mater. 5, 735-740. https://doi.org/10.1038/nmat1712
  2. Collins L, Kilpatrick J I, Weber S A L, Tselev A, Vlassiouk I V, Ivanov I N, Jesse S, Kalinin S V, and Rodriguez B J (2013) Open loop Kelvin probe force microscopy with single and multi-frequency excitation. Nanotechnology 24, 475702. https://doi.org/10.1088/0957-4484/24/47/475702
  3. Ellison D J, Lee B, Podzorov V, and Frisbie C D (2011) Surface potential mapping of SAM-functionalized organic semiconductors by Kelvin probe force microscopy. Adv. Mater. 23, 502-507. https://doi.org/10.1002/adma.201003122
  4. Gady B, Schleef D, Reifenberer R, Rimai D, and DeMejo L P (1996) Identification of electrostatic and van der Waals interaction forces between a micrometer-size sphere and a flat substrate. Phys. Rev. B 53, 8065-8070. https://doi.org/10.1103/PhysRevB.53.8065
  5. Girard P (2001) Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology 12, 485-490. https://doi.org/10.1088/0957-4484/12/4/321
  6. Hong J, Kim Y, Paik H, No K, and Lukes J R (2009) The effect of nitrogen incorporation on surface properties of silicon oxynitride films. Phys. Rapid Res. Lett. 3, 25-27.
  7. Jacobs H O, Knapp H F, and Stemmer A (1999) Practical aspects of Kelvin probe force microscopy. Rev. Sci. Instrum. 70, 1756-1760. https://doi.org/10.1063/1.1149664
  8. Kalinin S V and Bonnell D A (2001) Local potential and polarization screening on ferroelectric surfaces. Phys. Rev. B 63, 125411. https://doi.org/10.1103/PhysRevB.63.125411
  9. Kalinin S V and Bonnell D A (2004) Screening phenomena on oxide surfaces and its implications for local electrostatic and transport measurements. Nano Lett. 4, 555-560. https://doi.org/10.1021/nl0350837
  10. Kelvin L (1898) Contact electricity of metals. Philos. Mag. 46, 82-120. https://doi.org/10.1080/14786449808621172
  11. Kim Y, Park M, Buhlmann S, Hong S, Kim Y K, Ko H, Kim J, and No K (2010) Effect of local surface potential distribution on its relaxation in polycrystalline ferroelectric films. J. Appl. Phys. 107, 054103. https://doi.org/10.1063/1.3290953
  12. Li G Y, Mao B, Lan F, and Liu L M (2012) Practical aspects of single-pass scan Kelvin probe force microscopy. Rev. Sci. Instrum. 83, 113701. https://doi.org/10.1063/1.4761922
  13. Nonnenmacher M, O'Boyle M P, and Wickramasinghe H K (1991) Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921-2923. https://doi.org/10.1063/1.105227
  14. Palermo V, Palma M, and Samori P (2006) Electronic characterization of organic thin films by Kelvin probe force microscopy. Adv. Mater. 18, 145-164. https://doi.org/10.1002/adma.200501394
  15. Sadewasser S (2012) Experimental technique and working modes. In: Kelvin Probe Force Microscopy, ed. Glatzel T, pp. 7-24, (Springer, Heidelberg).
  16. Takahashi T, Kawamukai T, Ono S, Noda T, and Sakaki H (2000) Kelvin probe force microscopy on InAs thin films on (110) GaAs substrates. Jpn. J. Appl. Phys. 39, 3721-3723. https://doi.org/10.1143/JJAP.39.3721
  17. Takeuchi O, Ohrai Y, Yoshida S, and Shigekawa H (2007) Kelvin probe force microscopy without bias-voltage feedback. Jpn. J. Appl. Phys. 46, 5626-5630. https://doi.org/10.1143/JJAP.46.5626
  18. Vasudevan R, Marincel D, Jesse S, Kim Y, Kumar A, Kalinin S, and Trolier-Mckinstry S (2013) Polarization dynamics in ferroelectric capacitors: local perspective on emergent collective behavior and memory effects. Adv. Funct. Mater. 23, 2490-2508. https://doi.org/10.1002/adfm.201203422
  19. Wu Y and Shannon M A (2006) ac driving amplitude dependent systematic error in scanning Kelvin probe microscope measurements: detection and correction. Rev. Sci. Instrum. 77, 043711. https://doi.org/10.1063/1.2195104
  20. Yoo H, Bae C, Yang Y, Lee S, Kim M, Kim Y, and Shin H (2014) Spatial charge separation in asymmetric nanostructure of Au nanoparticle on $TiO_2$ nanotube by light-induced surface potential imaging. Nano Lett. 14, 4413-4417. https://doi.org/10.1021/nl501381a