DOI QR코드

DOI QR Code

수온과 용존산소 변화에 따른 미더덕 Styela clava의 생존율 및 생리적 반응

Effect of Temperature and Dissolved Oxygen on the Survival Rate and Physiological Response of the Warty Sea Squirt Styela clava

  • 신윤경 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 박정준 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 박미선 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 명정인 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 허영백 (국립수산과학원 남동해수산연구소)
  • Shin, Yun Kyung (Aquaculture Management Division, Aquaculture Research Institute, NFRDI) ;
  • Park, Jung Jun (Aquaculture Management Division, Aquaculture Research Institute, NFRDI) ;
  • Park, Mi Seon (Aquaculture Management Division, Aquaculture Research Institute, NFRDI) ;
  • Myeong, Jeong In (Aquaculture Management Division, Aquaculture Research Institute, NFRDI) ;
  • Hur, Young Baek (Southeast Sea Fisheries Research Institute, NFRDI)
  • 투고 : 2014.07.11
  • 심사 : 2014.09.11
  • 발행 : 2014.09.30

초록

미더덕의 집단폐사가 주로 발생하는 여름철 고수온 및 빈산소에 의한 생물학적 지표를 찾아 대량폐사 원인구명을 위한 기초자료로 활용하기 위하여 수온상승 및 용존산소농도 감소에 따른 미더덕의 생존율, 생리적 반응 및 조직학적 변화 등을 조사하였다. 수온상승에 따른 생존율은 수온 $23^{\circ}C$에서 63.3%, $26^{\circ}C$에서 56.6%였으며, 수온 $29^{\circ}C$에서 노출 6일째 모두 사망하여 노출 6일 동안의 반수치사 수온은(6day-$LT^{50}$)은 $24.58^{\circ}C$ ($19.48{\sim}35.48^{\circ}C$)였다. 용존산소 농도 감소에 따른 생존율은 노출 11일째 용존산소농도 $4.0mg\;L^{-1}$에서 20%였으며, $2.0mg\;L^{-1}$에서는 모두 사망하였고, 반수치사 용존산소 농도 (11day-$LC^{50}$)는 $3.88mg\;L^{-1}$($3.29{\sim}4.57mg\;L^{-1}$)였다. 산소소비율과 암모니아질소 배설률은 임계수온 및 임계용존산소 농도이하에서 감소하였다. 수온 상승 및 용존산소 농도 감소에 따른 미더덕의 새낭, 소화관 및 피낭의 병리조직학적 결과는 각 기관을 구성하고 있는 상피세포층의 증식, 응축 및 괴사, 식세포 및 혈구침윤, 섬모탈락, 근섬유 변성 등의 변성이 공통적으로 관찰되었다. 미더덕은 수온 $24^{\circ}C$이상, 용존산소 $3.8mg\;L^{-1}$이하에서 조직학적 병변, 대사율 감소 등으로 환경변화에 매우 민감한 생물이므로 여름철에 양성되고 있는 미더덕의 양식장관리에 세심한 관리가 요구된다.

Decrease in dissolved oxygen concentrations associated with temperature fluctuation is an important criteria to evaluate the mortality rate of the species. Based on this parameter, we investigated the survival rate, physiological response and histological change of warty sea squirt. It was found that the survival rate of the warty sea squirt species was 63.3% at $23^{\circ}C$ and 56.6% at $26^{\circ}C$ respectively. However, exposure of six days at $29^{\circ}C$ caused deaths among species, which indicated the 6day-$LT^{50}$ of the tested species to be $24.58^{\circ}C$ ($19.48{\sim}35.48^{\circ}C$). Further, after 11 day of exposure, the dissolved oxygen concentration has been found to decrease, with the survival rate of 20% at $4.0mg\;L^{-1}$ and deaths at $2.0mg\;L^{-1}$, thus 11day-$LC^{50}$ calculated to be $3.88mg\;L^{-1}$ ($3.29{\sim}4.57mg\;L^{-1}$). In addition, decrease in rate of oxygen consumption and excretion of ammonia was also noted at this critical water temperature and dissolve doxygen concentration. Moreover, there has been common histopathological changes were observed in warty sea squirt's gill pouch, digestive tract, and tunic as follows such as: proliferation of epithelial cells, condensation and necrosis, permeation of phagocyte and blood cell, loss of cilium and muscular fiber degeneration. Based on our study results, we suggest that these parameters can also be useful to evaluate the survival rate and physiological response in other species.

키워드

참고문헌

  1. Ansell AD and A McLachlan. 1980. Upper temperature tolerance of three molluscs from South African sandy beaches. J. Expt. Mar. Biol. Ecol. 48:243-251. https://doi.org/10.1016/0022-0981(80)90079-9
  2. Bayne BL and RC Newell. 1983. Physiological energetics of marine molluscs. pp.407-515. In The Mollusca, Vol. 4 (Wilbur KM and AS Saleuddin eds.). Academic Press, New York.
  3. DeZwaan A and TCM Wijsman. 1976. Anaerobic metabolism in bivalvia (Mollusca). Characteristics of anaerobic metabolism. Comp. Biochem. Physiol. 54B:313-317.
  4. Finney DJ. 1971. Probit Analysis, 3rd ed. Cambridge University Press. London, pp.333.
  5. Herreid CF. 1980. Hypoxia in invertebrates. Comp. Biochem. Physiol. 67A:311-320.
  6. Leighton DL, MJ Byhower, JC Kelly, GN Hooker and DE Morse. 1981. Acceleration of development and growth in young green abalone (Haliotis fungens) using warmed effluent sea water. J. World Maricult. Soc. 12:170-180.
  7. Ministry of Agriculture and Forestry. 1997. Studies on the development of aquaculture technology for ascidians, Styela clava Herdman. pp.1-195.
  8. Ministry for Food Agriculture, Forestry and Fisheries. 2011. Molecular genetic analysis for characterization of causing agents of Warty sea squirt mass mortality. pp.1-20.
  9. National Fisheries Research & Development Institute. 2009. The studies on stability of cultured sea squirt aquaculture fisheries. pp.93-107.
  10. National Fisheries Research & Development Institute. 2011. The Reacher and development of artificial seed production of tunicate Styela clavad. Annual Report, pp.1-56
  11. Newell RC and LH Kofoed. 1977. Adjustment of the components of energy balance in the gastropod Crepidula formicata in response to thermal acclimation. Mar. Biol. 44:275-286. https://doi.org/10.1007/BF00387708
  12. Otto RG. 1973. Temperature tolerance of the mosquito fish, Gambusia affinis (Baird and Girard). J. Fish Biol. 5:575-585. https://doi.org/10.1111/j.1095-8649.1973.tb04490.x
  13. Pamatmat MM. 1980. Faculative anaerobiosis of benthos. pp.69-90. In Marine benthic dynamics (Tenore KR and BC Coull eds.). Univ. of South Carolina, Columbia.
  14. Read KRH and KB Cumming. 1967. Thermal tolerance of the bivalve molluscs Modiolus modiolus L., Mytilus edulis L. and Brachidonetes demissus dillwyn. Com. Biochem. Physiol. 22:149-155. https://doi.org/10.1016/0010-406X(67)90176-4
  15. Shin YK, JJ Park, JC Jun, JI Myeong and SJ Yang. 2013. Effect of dissolved oxygen on occurrence of tunic softness syndrome in sea squirt Halocynthia roretzi, Tongyeong, South Coast of Korea. Korean J. Environ. Biol. 31:204-212. https://doi.org/10.11626/KJEB.2013.31.3.204
  16. Shin YK, TS Moon and CH Wi. 2002. Effects of the dissolved oxygen concentration on the physiology of the Manila clam, Tegillarca granosa (Linnaeus). J. Korean Fish. Soc. 35:485-489.
  17. Shin YK, Y Kim and EY Chung. 2001. Effects of the dissolved oxygen concentration on the physiology of the manila clam, Ruditapes philippinarum. J. Korean Fish. Soc. 34:190-193.
  18. Solorzano L. 1969. Determination of ammonia in natural waters by the phenol-hypochlorite method. Limnol. Ocean 14:799-801. https://doi.org/10.4319/lo.1969.14.5.0799
  19. Venables BJ. 1981. Oxygen consumption in a tropical beach amphipod, Talorchestia margaritae Stephenson, Effects of size and temperature. Crustacea 41:89-94. https://doi.org/10.1163/156854081X00101
  20. Widdows J. 1976. Physiological adaptation of Mytilus edulis to cycle temperatures. J. Comp. Physiol. 105:115-128. https://doi.org/10.1007/BF00691115
  21. Wilbur KM and CM Yonge. 1966. Physiology of mollusca. Academic press, New York and London, Volume II, pp.201-203.