DOI QR코드

DOI QR Code

Disease Occurrence in Transgenic Rice Plant Transformed with Silbene Synthase Gene and Evaluation of Possible Horizontal Gene Transfer to Plant Pathogens

  • Yu, Sang-Mi (Division of Biotechnology, Chonbuk National University) ;
  • Jeong, Ui-Seon (Division of Biotechnology, Chonbuk National University) ;
  • Lee, Ha Kyung (Division of Biotechnology, Chonbuk National University) ;
  • Baek, So Hyeon (Department of Rice and Winter Cereal Crop, National Institute of Crop Science, Rural Development Administration) ;
  • Kwon, Soon Jong (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Yong Hoon (Division of Biotechnology, Chonbuk National University)
  • Received : 2014.05.02
  • Accepted : 2014.07.28
  • Published : 2014.09.30

Abstract

Genetic engineering is being used to enhance disease resistance and nutritional value of crops including rice plant. Considering the fast-growing agricultural biotechnology and rapidly increasing global area of transgenic crops, the risk evaluation on environment is necessary. In this study, we surveyed the difference of disease occurrence between transgenic rice variety, Iksan526 transformed with peanut stilbene synthase gene and non-transgenic rice varieties, Dongjin and Nampyeong in the field. Moreover, the possibility of gene transfer from transgenic rice to bacterial and fungal pathogens was investigated. The results of this study indicated that there was no significant difference in the occurrence and severity of the diseases between Iksan526 and Dongjin or Nampyeong. In addition, the results suggested that rice pathogen, such as Xanthomonas oryzae pv. oryzae, Rhizoctonia solani and Magnaporthe grisea did not take up stilbene synthase and bar genes under natural conditions. Moreover the transformed DNA was not transferred to the pathogens even in repetitive contacts.

Keywords

References

  1. Adrian, M., Jeandet, P., Veneau, J., Weston, L. A. and Bessis, R. 1997. Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J. Chem. Ecol. 23: 1689-1702. https://doi.org/10.1023/B:JOEC.0000006444.79951.75
  2. Agarwal, B. and Baur, J. A. 2011. Resveratrol and life extension. Ann. N. Y. Acad. Sci. 1215: 138-143. https://doi.org/10.1111/j.1749-6632.2010.05850.x
  3. Baek, S.-S., Shin, W.-C., Ryu, H.-S., Lee, D.-W., Moon, E., Seo, C.-S., Hwang, E., Lee, H.-S., Ahn, M.-H., Jeon, Y., Kang H.-J., Lee, S.-W., Kim, S. Y., D'Souza, R., Kim, H.-J., Hong, S.-T. and Jeon, J.-S. 2013. Creation of resveratrol-enriched rice for the treatment of metabolic syndrome and related diseases. PLoS ONE 8: e57930. doi:10.1371/journal.pone.0057930.
  4. Bertolla, F., Pepin, R., Passelegue-Robe, E., Paget, E., Simkin, A., Nesme, X. and Simonet, P. 2000. Plant genome complexity may be a factor limiting in situ the transfer of transgenic plant genes to the phytopathogen Ralstonia solanacearum. Appl. Environ. Microbiol. 66: 4161-4167. https://doi.org/10.1128/AEM.66.9.4161-4167.2000
  5. Bertolla, F., van Gijsegem, F., Nesme, X. and Simonet, P. 1997. Conditions for natural transformation of Ralstonia solanacearum. Appl. Environ. Microbiol. 63: 4965-4968.
  6. Broer, I., Droge-Laser, W. and Gerke, M. 1996. Examination of the putative horizontal gene transfer from transgenic plants to agrobacteria. In: Transgenic Organisms and Biosafety, eds. by E. R. Schmidt and T. Hankeln, pp. 67-70. Springer Verlag, Berlin.
  7. Fang, Y., Xu, L.-H., Tian, W.-X., Huai, Y., Yu, S.-H., Lou, M.-M. and Xie, G.-L. 2009. Real-time fluorescence PCR method for detection of Burkholderia glumae from rice. Rice Science 16: 157-160. https://doi.org/10.1016/S1672-6308(08)60073-6
  8. Gebhard, F. and Smalla, K. 1998. Transformation of Acinetobacter sp. BD413 by transgenic sugar beet DNA. Appl. Environ. Microbiol. 64: 1550-1554.
  9. Gebhard, F. and Smalla, K. 1999. Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol. Ecol. 28: 261-272. https://doi.org/10.1111/j.1574-6941.1999.tb00581.x
  10. Hain, R., Reif, H. J., Krause, E., Langebartels, R., Kindl, H., Vornam, B., Wiese, W., Schmelzer, E., Schreier, P. H., Stocker, R. H. and Stenzel, K. 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153-156. https://doi.org/10.1038/361153a0
  11. Kauffman, H. E., Reddy, A. P. K., Hsieh, S. P. Y. and Merca, S. D. 1973. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis. Rep. 57: 537-541.
  12. Kobayashi, S., Ding, C. K., Nakamura, Y., Nakajima, I. and Matsumoto, R. 2000. Kiwifruit (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol glucoside). Plant Cell Rep. 19: 904-910. https://doi.org/10.1007/s002990000203
  13. Leckband, G. and Lorz, H. 1998. Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor. Appl. Genet. 96: 1001-1012.
  14. Lorenz, M. G. and Wackernagel, W. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58: 563-602.
  15. Maddox, C. E., Laur, L. M. and Tian, L. 2010. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Curr. Microbiol. 60: 53-58. https://doi.org/10.1007/s00284-009-9501-0
  16. Naureen, Z., Price, A. H., Hafeez, F. Y. and Roberts, M. R. 2009. Identification of rice blast disease-suppressing bacterial strains from the rhizosphere of rice grown in Pakistan. Crop Prot. 28: 1052-1060. https://doi.org/10.1016/j.cropro.2009.08.007
  17. Nielsen, K. M., Gebhard, F., Smalla, K., Bones, A. M. and Van Elsas, J. D. 1997a. Evaluation of possible horizontal gene transfer from transgenic plants to the soil bacterium Acinetobacter calcoaceticus BD413. Theor. Appl. Genet. 95: 815-821. https://doi.org/10.1007/s001220050630
  18. Nielsen, K. M., van Weerelt, D. M., Berg, T. N., Bones, A. M., Hagler, A. N. and van Elsas, J. D. 1997b. Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microbiol. 63: 1945-1952.
  19. Park, D.-S., Sayler, R. J., Hong, Y.-G., Nam, M.-H. and Yang, Y. 2008. A method for inoculation and evaluation of rice sheath blight disease. Plant Dis. 92: 25-29. https://doi.org/10.1094/PDIS-92-1-0025
  20. Serazetdinova, L., Oldach, K. H. and Lorz, H. 2005. Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. J. Plant Physiol. 162: 985-1002. https://doi.org/10.1016/j.jplph.2004.11.005
  21. Song, F. and Goodman, R. M. 2001. Molecular biology of disease resistance in rice. Physiol. Mol. Plant Pathol. 59: 1-11. https://doi.org/10.1006/pmpp.2001.0353
  22. Stark-Lorenzen, P., Nelke, B., HanBler, G., Muhlbach, H. P. and Thomzik, J. E. 1997. Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L). Plant Cell Rep. 16: 668-673. https://doi.org/10.1007/s002990050299
  23. Tsushima, S., Wakimoto, S. and Mogi, S. 1986. Medium of detecting Pseudomonas glumae Kurita et Tabei, the causal bacteria of grain rot rice. Ann. Phytopath. Soc. Japan 52: 253-259. https://doi.org/10.3186/jjphytopath.52.253
  24. Ye, G. Y., Yao, H. W., Shu, Q. Y., Cheng, X., Hu, C., Xia, Y. W., Gao, M. W. and Altosaar, I. 2003. High levels of stable resistance in transgenic rice with a cry1Ab gene from Bacillus thuringiensis Berliner to rice leaffolder, Cnaphalocrocis medinalis (Guenee) under field conditions. Crop Prot. 22: 171-178. https://doi.org/10.1016/S0261-2194(02)00142-4
  25. Yu, C. K., Springob, K., Schmidt, J., Nicholson, R. L., Chu, I. K., Yip, W. K. and Lo, C. 2005. A stilbene synthase gene (SbSTS1) is involved in host and nonhost defense responses in sorghum. Plant Physiol. 138: 393-401. https://doi.org/10.1104/pp.105.059337