DOI QR코드

DOI QR Code

Identification and Characterization of Novel Biocontrol Bacterial Strains

  • Lee, Seung Hwan (Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, In Seon (Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Young Cheol (Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
  • Received : 2014.06.16
  • Accepted : 2014.08.26
  • Published : 2014.09.30

Abstract

Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera.

Keywords

References

  1. Alexander, D. B. and Zuberer, D. A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12: 39-45. https://doi.org/10.1007/BF00369386
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1989. Current protocols in molecular biology. John Wiley and Sons. New York, USA. 4755 pp.
  3. Benitez, M. S. and McSpadden Gardener, B. B. 2009. Linking sequence to function in soil bacteria sequence-directed isolation of novel bacteria contributing to soilborne plant disease suppression. Appl. Environ. Microbiol. 75: 915-924. https://doi.org/10.1128/AEM.01296-08
  4. Bonaterra, A., Mari, M., Casalini, L. and Montesinos, E. 2003. Biological control of Monilinia laxa and Rhizopus stolonifer in postharvest of stone fruit by Pantoea agglomerans EPS125 and putative mechanisms of antagonism. Int. J. Food Microbiol. 84: 93-104. https://doi.org/10.1016/S0168-1605(02)00403-8
  5. Burch, A. Y., Shimada, B. K., Browne, P. J. and Lindow, S. E. 2010. Novel high-throughput detection method to assess bacterial surfactant production. Appl. Environ. Microbiol. 75: 5363-5372.
  6. Burgues, H. D. 1998. Formulation of microbial biopesticides: Beneficial microorganisms, nematodes and seed treatments. Kluwer Academic Pubishers. Dordrecht, Netherlands. 410 pp.
  7. Costa, E., Teixido, N., Usall, J., Atares, E. and Vinas, I. 2001. Production of the biocontrol agent Pantoea agglomerans strain CPA-2 using commercial products and by-products. Appl. Microbiol. Biotech. 56: 367-371. https://doi.org/10.1007/s002530100666
  8. Dastager, S. D., Kumaran, D. C. and Pandey, A. 2010. Characterization of plant growth-promoting rhizobacterium Exiguobacterium NII-0906 for its growth promotion of cowpea (Vigna unguiculata). Biologia 65: 197-203. https://doi.org/10.2478/s11756-010-0010-1
  9. Emmert, E. A. B. and Handelsman, J. 1999. Biocontrol of plant diseases: a (Gram-) positive perspective. FEMS Microbiol. Rev. 171: 1-9. https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  10. Fravel, D. R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43: 337-359. https://doi.org/10.1146/annurev.phyto.43.032904.092924
  11. Haas, D. and Keel, C. 2003. Regulation of antibiotic production in root colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41: 117-153. https://doi.org/10.1146/annurev.phyto.41.052002.095656
  12. Hall, T. A. 1977. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 97/98/NT. Nucl. Acids Symp. Ser. 41: 95-98.
  13. Kaur, G. and Padmaja, V. 2008. Relationships among activities of extracellular enzyme production and virulence against Helicoverpa armigera in Beauveria bassiana. J. Basic Microbiol. 48: 1-10. https://doi.org/10.1002/jobm.200890001
  14. Kim, Y. C., Leveau, J., McSpadden-Gardener, B. B., Pierson, E. A., Pierson, L. S. and Ryu, C. M. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77: 1548-1555. https://doi.org/10.1128/AEM.01867-10
  15. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  16. King, E. O., Ward, M. and Raney, D. 1954. Two simple media for the demonstrating of pyocyanin and fluorescein. J. Lab. Clic. Med. 44: 301-307.
  17. Lugtenberg, B. J. J., Dekkers, L. and Bloemberg, G. V. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39: 461-490. https://doi.org/10.1146/annurev.phyto.39.1.461
  18. Oh, S. A., Kim, J. S., Han, S. H., Park, J. Y., Dimkpa, C., Edlund, C., Anderson, A. J. and Kim. Y. C. 2013. The GacS-regulated sigma factor RpoS governs production of several factors involved in biocontrol activity of the rhizobacterium Pseudomonas chlororaphis O6. Can. J. Microbiol. 59: 556-562. https://doi.org/10.1139/cjm-2013-0062
  19. O'Hara, C. M., Brenner, F. W. and Miller, J. M. 2000. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin. Microbiol. Rev. 13: 534-546. https://doi.org/10.1128/CMR.13.4.534-546.2000
  20. Park, J. K., Lee, S.-H., Lee, J.-H., Han, S., Kang, H., Kim, J.-C., Kim, Y. C. and McSpadden Gardener, B. 2013. Sampling and selection factors that enhance the diversity of microbial collections: Application to biopesticide development. Plant Pathology J. 29: 144-153. https://doi.org/10.5423/PPJ.SI.01.2013.0015
  21. Park, M. R., Kim, Y. C., Park, J. Y., Han, S. H., Kim, K. Y., Lee, S. W. and Kim, I. S. 2008. Identification of an ISR-related metabolite produced by Pseudomonas chlororaphis O6 against wildfire pathogen Pseudomonas syringae pv. tabaci in tobacco. J. Microbiol. Biotechnol. 18: 1659-1662.
  22. Selvakumar, G., Joshi, P., Nazim, S., Mishra, P. K., Kundu, S. and Gupta, H. S. 2009. Exiguobacterium acetylicum strain 1P (MTCC 8707) a novel bacterial antagonist from the North Western Indian Himalayas. World J. Microbiol. Biotech. 25: 131-137. https://doi.org/10.1007/s11274-008-9874-4
  23. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  24. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA 6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  25. van Loon, L. C., Bakker, P. A. H. M. and Pierterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483. https://doi.org/10.1146/annurev.phyto.36.1.453
  26. Weller, D. M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97: 250-256. https://doi.org/10.1094/PHYTO-97-2-0250
  27. Zhang, L. and Birch, R. G. 1996. Biocontrol of sugar cane leaf scald disease by an isolate of Pantoea dispersa which detoxifies albicidin phytotoxins. Lett. Appl. Microbiol. 22: 132-136. https://doi.org/10.1111/j.1472-765X.1996.tb01126.x