DOI QR코드

DOI QR Code

A Review of Detection Methods for the Plant Viruses

  • Jeong, Joo-Jin (Department of Agricultural Biology Chonbuk National University) ;
  • Ju, Ho-Jong (Department of Agricultural Biology Chonbuk National University) ;
  • Noh, Jaejong (Watermelon Experiment Station, Jeollabuk-do Agricultural Research & Extension Services)
  • Received : 2014.07.31
  • Accepted : 2014.09.04
  • Published : 2014.09.30

Abstract

The early and accurate detection of plant viruses is an essential component to control those. Because the globalization of trade by free trade agreement (FTA) and the rapid climate change promote the country-to-country transfer of viruses and their hosts and vectors, diagnosis of viral diseases is getting more important. Because symptoms of viral diseases are not distinct with great variety and are confused with those of abiotic stresses, symptomatic diagnosis may not be appropriate. From the last three decades, enzyme-linked immunosorbent assays (ELISAs), developed based on serological principle, have been widely used. However, ELISAs to detect plant viruses decrease due to some limitations such as availability of antibody for target virus, cost to produce antibody, requirement of large volume of sample, and time to complete ELISAs. Many advanced techniques allow overcoming demerits of ELISAs. Since the polymerase chain reaction (PCR) developed as a technique to amplify target DNA, PCR evolved to many variants with greater sensitivity than ELISAs. Many systems of plant virus detection are reviewed here, which includes immunological-based detection system, PCR techniques, and hybridization-based methods such as microarray. Some of techniques have been used in practical, while some are still under developing to get the level of confidence for actual use.

Keywords

References

  1. Aboul-Ata, A. E., Mazyad, H., El-Attar, A. K., Soliman, A. M., Anfoka, G., Zeidaen, M., Gorovits, R., Sobol, I. and Czosnek, H. 2011. Diagnosis and control of cereal viruses in the Middle East. Adv. Virus Res. 81: 33-61. https://doi.org/10.1016/B978-0-12-385885-6.00007-9
  2. Adkar-Purushothama, C. J., Maheshwar, P. K., Sano, T. and Janardhana, G. R. 2011. A sensitive and reliable RT-nested PCR assay for detection of Citrus tristeza virus from naturally infected citrus plants. Curr. Microbiol. 62: 1455-1459. https://doi.org/10.1007/s00284-011-9883-7
  3. Adkins, S., Webb, S. E., Baker, C. A., Baker, C. A. and Kousik, C. S. 2008. Squash vein yellowing virus detection using nested polymerase chain reaction demonstrates that the Cucurbit weed Momordica charantia is a reservoir host. Plant Dis. 92: 1119-1123. https://doi.org/10.1094/PDIS-92-7-1119
  4. Agrios, G. N. 2005. Plant Pathology. 5th ed. Elsvier, New York, NY. 922 pp.
  5. Bachelder, E., Ainslie, K. and Pishko, M. 2005. Utilizing a quartz crystal microbalance for quantifying $CD_4^+$ Tcell counts. Sensor Lett. 3: 211-215. https://doi.org/10.1166/sl.2005.029
  6. Becker, B. and Cooper, M. A. 2011. A survey of the 2006-2009 quartz crystal microbalance biosensor literature. J. Mol. Recognit. 24: 754-787. https://doi.org/10.1002/jmr.1117
  7. Bertolini, E., Torres, E., Olmos, A., Martin, M. P., Bertaccini, A. and Cambra, M. 2007. Co-operational PCR coupled with dot blot hybridization for detection and 16SrX grouping of phytoplasmas. Plant Pathol. 56: 677-682. https://doi.org/10.1111/j.1365-3059.2007.01601.x
  8. Boonham, N., Kreuze, J., Winter, S., Van der Vlugt, R., Bergervoet, J., Tomilinson, J. and Mumford, R. 2014. Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Res. 186: 20-31. https://doi.org/10.1016/j.virusres.2013.12.007
  9. Boonham, N., Tomilinson, J. and Mumford, R. 2007. Microarrays for Rapid Identification of Plant Viruses. Annu. Rev. Phytopathol. 45: 307-328. https://doi.org/10.1146/annurev.phyto.45.062806.094349
  10. Bove, J. M., Vogel, R., Albertini, D. and Bove, J. M. 1988. Discovery of a strain of Tristeza virus (K) inducing no symptoms in Mexican lime. Proceedings of the 10th Conference of IOCV. Spain 1988. International Organization of Citrus Virologists Riverside, CA. pp. 14-16.
  11. Bystricka, D., Lenza, O., Mraza, I., Piherovad, L., Kmochd, S. and Sipc, M. 2005. Oligonucleotide-based microarray: A new improvement in microarray detection of plant viruses. J. Virol. Methods 128: 176-182. https://doi.org/10.1016/j.jviromet.2005.04.009
  12. Capote, N., Bertolini, E., Olmos, A., Vidal, E., Martinez, M. C. and Cambra, M. 2009. Direct sample preparation methods for the detection of Plum pox virus by real-time RT-PCR. Int. Microbiol. J. 12: 1-6.
  13. Caruso, P., Bertolini, E., Cambra, M. and Lopez, M. M. 2003. A new and sensitive Co-operational polymerase chain reaction (Co-PCR) for a rapid detection of Ralstonia solanacearum in water. J. Microbiol. Methods 55: 257-272. https://doi.org/10.1016/S0167-7012(03)00161-1
  14. Chen, Z.-G. and Tang, D.-Y. 2007. Antigen-antibody interaction from quartz crystal microbalance immunosensors based on magnetic CoFe2O4/SiO2 compositenanoparticle-functionalized biomimetic interface. Bioproc. Biosyst. Eng. 30: 243-249. https://doi.org/10.1007/s00449-007-0120-5
  15. Cho, H., Kang, J. and Park, N. 2006. Detection of canine parvovirus in fecal samples using loop-mediated isothermal amplification. J. Vet. Diagn. Invest. 18: 81-84. https://doi.org/10.1177/104063870601800111
  16. Clark, M. F. and Adamas, A. N. 1977. Characteristic of the microplate of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34: 475-483. https://doi.org/10.1099/0022-1317-34-3-475
  17. Compton, J. 1991. Nucleic acid sequence-based amplification. Nature 350: 91-92. https://doi.org/10.1038/350091a0
  18. Corning Life Science. 2001. Selecting the detection System: Colorimetric, Fluorescent, Luminescent Methods. ELISA Technical Bulletin 5:p14 http://catalog2.corning.com/Lifesciences/media/pdf/elisa5.pdf (Accessed Jul. 24, 2014).
  19. Dickert, F. L., Hayden, O., Bindeus, R., Mann, K., Blaas, D. and Waigmann, E. 2004. Bioimprinted QCM sensors for virus detection screening of plant sap. Anal. Bioanal. Chem. 378: 1929-1934. https://doi.org/10.1007/s00216-004-2521-5
  20. Drygin, Y. F., Blintsov, A. N., Grigorenko, V. G., Andreena, I. P., Opsipov, A. P., Varitzev, Y. A., Uskov, A. I., Kravchenko, D. V. and Atabekov, J. G. 2012. Highly sensitive field test lateral flow immunodiagnostics of PVX infection. Appl. Microbiol. Biotechnol. 93: 179-189. https://doi.org/10.1007/s00253-011-3522-x
  21. Dugat-Bony, E., Peyretaillade, E., Parisot, N., Biderre-Petit, C., Jaziri, F., Hill, D., Rimour, S. and Peyret, P. 2012. Detecting unknown sequences with DNA microarrays : explorative probe design strategies. Environ. Microbiol. 14: 356-371. https://doi.org/10.1111/j.1462-2920.2011.02559.x
  22. Eid, S., Atamian, H. S., Abou-Jawdah, Y. and Havey, M. J. 2008. Assessing the movement of Cucurbit yellow stunting disorder virus in susceptible and tolerant cucumber germplasms using serological and nucleic acid based methods. J. Phytopathol. 156: 438-445. https://doi.org/10.1111/j.1439-0434.2007.01388.x
  23. Eiken Chemical Co. Ltd. 2005. The principle of LAMP method. http://loop amp.eiken.co.jp/e/lamp/principle.html (Accessed Jul. 24, 2014).
  24. El-Araby, S. W., Ibrahin, A. I., Hemeida, A. A., Mahmo, A., Soliman, M. A., El-Attar, K. A. and Mazyad, M. H. 2009. Biological, serological and molecular diagnosis of three major potato viruses in egypt. Int. J. Virol. 5: 77-88. https://doi.org/10.3923/ijv.2009.77.88
  25. Ellis, S. D., Boehm, M. J. and Qu, F. 2008. Agriculture and Natural Resources: Viral Diseases of Plants (PP401.05) [Fact Sheet]. Ohio State Univ., Ohio State Univ. Extension. http://ohioline.osu.edu/hyg-fact/3000/pdf /PP401_05.pdf (Accessed Jul. 24, 2014).
  26. Eun, A. J., Huang, L., Chew, F., Li, S. F. and Wong, S. 2002. Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. J. Virol. Methods 99: 71-79. https://doi.org/10.1016/S0166-0934(01)00382-2
  27. Fegla, G. and Kawanna, M. 2013. Improved indirect ELISA for detection of some plant viruses. Int. J. Agric. Biol. 15: 939-944.
  28. Gibson, U. E. M., Heid, C. A. and Williams, P. M. 1996. A novel method for real time quantitative RT-PCR. Genome Res. 6: 995-1001. https://doi.org/10.1101/gr.6.10.995
  29. Ham, Y. I. 2003. Review on the occurrence and studies of potato viral diseases in Korea. Res. Plant Dis. 9: 1-9. https://doi.org/10.5423/RPD.2003.9.1.001
  30. Hammond, J. 2011. Universal plant virus microarrays, broad spectrum PCR assays, and other tools for virus detection and identification. Acta Hortic. 901: 49-60.
  31. Hancevic, K., Cerni, S., Radic, T. and Skoric, D. 2012. Comparison of different methods for Citrus tristeza virus detection in Satsuma mandarins. J. Plant Dis. Protect. 119: 2-7. https://doi.org/10.1007/BF03356412
  32. Heid, C. A., Stevens, J., Livak, K. J. and Williams, M. P. 2011. Real time quantitative PCR. Genome Res. 6: 986-994.
  33. Helguera, P. R., Docampo, D. M., Nome, S. F. and Ducasse, D. A. 2002. Enhanced detection of Prune dwarf virus in peach leaves by immunocapture-reverse transcription-polymerase chain reaction with nested polymerase chain Reaction (IC-RT-PCR Nested PCR). J. Phytopathol. 150: 94-96. https://doi.org/10.1046/j.1439-0434.2002.00696.x
  34. Helguera, P. R., Taborda, R., Docampo, D. M. and Ducasse, D. A. 2001. Immunocapture reverse transcription-polymerase chain reaction combined with nested PCR greatly increases the detection of Prunus necrotic ring spot virus in the peach. J. Virol. Methods 95: 93-100. https://doi.org/10.1016/S0166-0934(01)00299-3
  35. Hull, R. 2002. Matthew's Plant Virology. 4th ed. Academic Press, New York, NY. 1001 pp.
  36. Ju, H.-J. 2011. Simple and rapid detection of Potato leafroll virus (PLRV) by reverse transcription loop-mediated isothermal amplification (RT-LAMP). Plant Pathology J. 27: 1-4. https://doi.org/10.5423/PPJ.2011.27.1.001
  37. Kfir, R. and Genthe, B. 1993. Advantages and disadvantages of the use of immunodetection techniques for the enumberation of microorganisms and toxins in water. Water Sci. Technol. 27: 243-252.
  38. King, A. M. Q., Adams, M. J., Eric, B. C. and Lefkowitz, E. J. 2011. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier. San diego, CA. 1339 pp.
  39. Kleo, K., Kapp, A., Ascher, L. and Lisdat, F. 2011. Detection of vaccinia virus DNA by quartz crystal microbalance. Anal. Biochem. 418: 260-266. https://doi.org/10.1016/j.ab.2011.07.016
  40. Klerks, M. M., Leone, G., Lindner, J. L., Schoen, C. D. and ven den Heuvel, J. F. 2001. Rapid and sensitive detection of Apple stem pitting virus in apple trees through RNA amplification and probing with fluorescent molecular beacons. Phytopathology 91: 1085-1091. https://doi.org/10.1094/PHYTO.2001.91.11.1085
  41. Kurosawa, S., Park, J.-W., Aizawa, H., Wakida, S.-I., Tao, H. and Ishihara, K. 2006. Quartz crystal microbalance immunosensors for environmental monitoring. Biosens Bioelectron. 22: 473-481. https://doi.org/10.1016/j.bios.2006.06.030
  42. Lee, D., Mura, L. M., Alnutt, R. T. and Powell, W. 2009. Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences. BMC Biotechnol. 9: 1-7. https://doi.org/10.1186/1472-6750-9-1
  43. Lee, G. P., Min, B. E., Kim, C. S., Choi, S. H., Harn, H. H., Kim, S. U. and Ryu, K. H. 2003. Plant virus cDNA chip hybridization for detection and differentiation of four cucurbit-infecting Tobamoviruses. J. Virol. Methods 110: 19-24. https://doi.org/10.1016/S0166-0934(03)00082-X
  44. Lee, J.-S., Cho, W. K., Lee, S.-H., Choi, H.-S. and Kim, K. H. 2011. Development of RT-PCR based method for detecting five non-reported quarantine plant viruses infecting the family Cucurbitaceae or Solanaceae. Plant Pathology J. 27: 93-97. https://doi.org/10.5423/PPJ.2011.27.1.093
  45. Lee, Y. G. and Chang, K. S. 2005. Application of a flow type quartz crystal microbalance immunosensor for real time determination of cattle bovine ephemeral fever virus in liquid. Talanta 65: 1335-1342. https://doi.org/10.1016/j.talanta.2004.09.011
  46. Leone, G., van Schijndel, H. B., van Genien, B. and Schoen, C. D. 1997. Direct detection of Potato leafroll virus in potato tubers by immunocapture and the isothermal nucleic acid amplification method NASBA. J. Virol. Methods 66: 19-27. https://doi.org/10.1016/S0166-0934(97)02203-9
  47. Li, M., Asano, T., Suga, H. and Kageyama, K. 2011. A multiplex PCR for the detection of Phytophthora nicotianae and P. cactorum, and a survey of their occurrence in strawberry production areas of Japan. Plant Dis. 95: 1270-1278. https://doi.org/10.1094/PDIS-01-11-0076
  48. Lievens, B., Grauwet, T. J. M. A., Cammue, B. P. A. and Thomma, B. P. H. J. 2005. Recent developments in diagnostics of plant pathogens: a review. Recent Res. Dev. Microbiol. 9: 57-79.
  49. Lin, N. S., Hsu, Y. H. and Hsu, H. T. 1990. Immunological detection of plant viruses and a mycoplasma like organism by direct tissue blotting on nitrocellulose membranes. Phytopathology 80: 824-828. https://doi.org/10.1094/Phyto-80-824
  50. Lopez, M. M., Llop, P., Olmos, A., Marco-Noales, E., Cambra, M. and Bertolini, E. 2008. Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses?. Curr. Issues Mol. Biol. 11: 13-45.
  51. Luminex. 2010. xMAP Technology Technical Note: Overcoming the cost and performance limitations of ELISA with xMAP technology. http://www.luminexcorp.com/prod/ groups/public/documents/lmnxcorp/308-xmap-vs.-elisa-white-paper.pdf (Accessed Jul. 22, 2014).
  52. Makkouk, K. M. and Kumari, S. G. 2006. Molecular diagnosis of plant viruses. Arab. J. Plant Protect. 24: 135-138.
  53. Martos, S., Torres, E., El Bakali, M. A., Raposo, R., Gramaje, D., Armengol, J. and Luque, J. 2011. Co-operational pcr coupled with dot blot hybridization for the detection of Phaeomoniella chlamydospora on infected grapevine wood. J. Phytopathol. 159: 247-254. https://doi.org/10.1111/j.1439-0434.2010.01758.x
  54. Maskos, U. and Southern, E. M. 1992. Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res. 20: 1679-1684. https://doi.org/10.1093/nar/20.7.1679
  55. McCartney, A. H., Foster, S. J., Fraaige, B. A. and Ward, E. 2003. Molecular diagnostics for fungal plant pathogens. Pest Manag. Sci. 59: 129-142. https://doi.org/10.1002/ps.575
  56. Mecea, V. M. 2005. From quartz crystal microbalance to fundamental principles of mass measurements. Anal. Lett. 38: 753-767. https://doi.org/10.1081/AL-200056171
  57. Mecea, V. M. 2006. Is quartz crystal microbalance really a mass sensor? Sens. Act. A 128: 270-277. https://doi.org/10.1016/j.sna.2006.01.023
  58. Menzel, W., Jelkmann, W. and Maiss, E. 2002. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J. Virol. Methods 99: 81-92. https://doi.org/10.1016/S0166-0934(01)00381-0
  59. Moreno, A., Bertolini, E., Olmos, A., Cambra, M. and Fereres, A. 2007. Estimation of vector propensity for Lettuce mosaic virus based on viral detection in single aphids. Span. J. Agric. Res. 5: 376-384. https://doi.org/10.5424/sjar/2007053-5343
  60. Mumford, R. A., Walsh, K., Barker, I. and Boonham, N. 2000. Detection of Potato moptop virus and Tobacco rattle virus using a multiplex real-time fluorescent reverse transcription polymerase chain reaction assay. Phytopathology 90: 448-453. https://doi.org/10.1094/PHYTO.2000.90.5.448
  61. Naidua, R. A. and Hughes, J. A. 2001. Methods for the detection of plant virus diseases. In: Proceedings of a Conference Organized by IITA, Plant Virology in Sub Saharan Africa pp. 233-260. International Institute of Tropical Agriculture. Oyo State, Nigeria.
  62. Nam, M., Kim, J. S., Lim, S. M., Park, C. Y., Kim, J. G., Choi, F. S., Lim, H. S., Moon, J. S. and Lee, S. H. 2014. Development of the large-scale oligonucleotide chip for the diagnosis of plant viruses and its pracIical use. Plant Pathology J. 30: 51-57. https://doi.org/10.5423/PPJ.OA.08.2013.0084
  63. Nie, X. 2005. Reverse transcription loop-mediated isothermal amplification of DNA for detection of Potato virus Y. Plant Dis. 89: 605-610. https://doi.org/10.1094/PD-89-0605
  64. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:e63 doi: 10.1093/nar/28.12.e63.
  65. Olmos, A., Bertolini, E. and Cambra, M. 2002. Simultaneous and cooperational amplification (Co-PCR): a new concept for detection of plant viruses. J. Virol. Methods 106: 51-59. https://doi.org/10.1016/S0166-0934(02)00132-5
  66. Olmos, A., Bertolini, E. and Cambra, M. 2007. Isothermal amplification coupled with rapid flow-through hybridisation for sensitive diagnosis of Plum pox virus. J. Virol. Methods 139: 111-115. https://doi.org/10.1016/j.jviromet.2006.09.012
  67. Olmos, A., Cambra, M., Esteban, O., Gorris, M. T. and Terrada, E. 1999. New device and method for capture, reverse transcription, and nested PCR in a single closed-tube. Nucleic Acid Res. 27: 1564-1565. https://doi.org/10.1093/nar/27.6.1564
  68. Owen, T. W., Al-Kaysi, R. O., Bardeen, C. J. and Cheng, Q. 2007. Microgravimetric immunosensor for direct detection of aerosolized influenza A virus particles. Sens. Act. B 126: 691-699. https://doi.org/10.1016/j.snb.2007.04.028
  69. Pantaleo, V., Saponari, M. and Gallitelli, D. 2001 Development of a nested PCR protocol for detection of olive-infecting viruses in crude extracts. J. Plant Pathol. 83: 143-146.
  70. Parida, M., Sannarangaiah, S., Dash, P. K., Rao, P. V. L. and Morita, K. 2008. Loop mediated isothermal amplification (LAMP); a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev. Med. Virol. 18: 407-421. https://doi.org/10.1002/rmv.593
  71. Pearson, M. N., Clover, G. R. G., Guy, P. L., Fletcher J. D. and Beever, R. E. 2006. A review of the plant virus, viroid and mollicute records for New Zealand. Australas. Plant Pathol. 35: 217-252. https://doi.org/10.1071/AP06016
  72. Peiman, M. and Xie, C. 2006. Sensitive detetction of potato viruses, PVX, PLRV, and PVS, by RT-PCR in potato leaf and tuber. Australas. Plant Dis. Notes 1: 41-46. https://doi.org/10.1071/DN06017
  73. Peter, K. A., Gildow, F., Palukaitis, P. and Gray, S. M. 2009. The C terminus of the Polerovirus P5 readthrough domain limits virus infection to the phloem. J. Virol. 83: 5419-5429. https://doi.org/10.1128/JVI.02312-08
  74. Plant Viruses. 2003. World of Microbiology and Immunology. http://www.encyclopedia.com/doc/1G2-3409800449.html (Accessed Jul. 20, 2014)
  75. Qu, X. S., Wanner, L. A. and Christ, B. J. 2011. Multiplex real-time PCR (TaqMan) assay for the simultaneous detection and discrimination of potato powdery and common scab diseases and pathogens. J. Appl. Microbiol. 110: 769-777. https://doi.org/10.1111/j.1365-2672.2010.04930.x
  76. Ruiz-Ruiz, S., Ambros, S., del Carmen Vives, M., Navarro, L., Moreno, P. and Jose, G. 2009. Detection and quantitation of Citrus leaf blotch virus by TaqMan real-time RT-PCR. J. Virol. Methods 160: 57-62. https://doi.org/10.1016/j.jviromet.2009.04.012
  77. Ruiz-Ruiz, S., Moreno, P., Jose, G. and Ambros, S. 2007. A real-time RT-PCR assay for detection and absolute quantitation of Citrus tristeza virus in different plant tissues. J. Virol. Methods 145: 96-105. https://doi.org/10.1016/j.jviromet.2007.05.011
  78. Saiki, R., Gelfand, D., Stoffel, S., Scharf, S., Higuchi, R., Horn, G., Mullis, K. and Erlich, H. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491. https://doi.org/10.1126/science.2448875
  79. Saiki, R. K., Scharf, S., Falcona, F., Mullis, K., Horn, G. T., Erlich, H. A. and Arnheim, N. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350-1354. https://doi.org/10.1126/science.2999980
  80. Schaad, N. W. and Frederick, R. D. 2002. Real-time PCR and its application for rapid plant disease diagnostics. Can. J. Plant Pathol. 24: 250-258. https://doi.org/10.1080/07060660209507006
  81. Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470. https://doi.org/10.1126/science.270.5235.467
  82. Scholthof, K.-B. G. 2000. Tobacco mosaic virus. The Plant Health Instructor. http://www.apsnet.org/edcenter/intropp/lessons/viruses/Pages/Tob accoMosaic.aspx (Accessed Jul. 20, 2014).
  83. Shang, H., Xie, Y., Zhou, X., Qian, Y. and Wu, J. 2011. Monoclonal antibody-based serological methods for detection of Cucumber green mottle mosaic virus. Virol. J. 8: 228-234. https://doi.org/10.1186/1743-422X-8-228
  84. Shiobara, Y., Yoshino, M., Uragami, A., Widiastuti, A., Omori, A., Kuba, K., Saito, H., Hirata, Y., Sonoda, T., Koizumi, T. and Sato, T. 2011. Sex distinction of asparagus by loop-mediated isothermal amlification and observation of seedling phenotypes. Euphytica 177: 91-97. https://doi.org/10.1007/s10681-010-0265-1
  85. Singh, P. R., Dilworth, D. A., Singh, M. and McLaren, L. D. 2004. Evaluation of simple membrane-based nucleic acid preparation protocol for RT-PCR detection of potato viruses from aphid and plant tissues. J. Virol. Methods 121: 163-170. https://doi.org/10.1016/j.jviromet.2004.06.012
  86. Singh, R. P., Nie, X. and Singh, M. 2000. Duplex RT-PCR: reagent concentrations at reverse transcription stage affect the PCR performance. J. Virol. Methods 86: 121-129. https://doi.org/10.1016/S0166-0934(00)00138-5
  87. Strange, R. N. 2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43: 83-116. https://doi.org/10.1146/annurev.phyto.43.113004.133839
  88. Su, C. C., Wu, T. Z., Chen, L. K., Yang, H. H. and Tai, D. F. 2003. Development of immunochips for the detection of dengue viral antigens. Anal. Chim. Acta 479: 117-123. https://doi.org/10.1016/S0003-2670(02)01529-5
  89. Sun, W., Jiao, K., Zhang, S., Zhang, C. and Zhang, Z. 2001. Electrochemical detection for horseradish peroxidase-based enzyme immunoassay using p-aminophenol as substrate and its application in detection of plant virus. Anal. Chim. Acta 434: 43-50. https://doi.org/10.1016/S0003-2670(01)00803-0
  90. Susmel, S., O'Sullivan, C. K. and Guilbault, G. G. 2000. Human cytomegalovirus detection by a quartz crystal microbalance immunosensor. Enzyme Microb. Tech. 27: 639-645. https://doi.org/10.1016/S0141-0229(00)00196-4
  91. Tang, D.-Q., Zhang, D.-J., Tang, D.-Y. and Ai, H. 2006. Amplification of the antigen-antibody interaction from quartz crystal microbal ance immunosensors via back-filling immobilization of nanogold on biorecognition surface. J. Immunol. Methods 316: 144-152. https://doi.org/10.1016/j.jim.2006.08.012
  92. Tomita, N., Mori, Y., Kanda, H. and Notomi, T. 2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of product. Nature Protoc. 3: 877-882. https://doi.org/10.1038/nprot.2008.57
  93. Tomlinson, J. A., Boonham, N. and Dickinson, M. 2010. Development and evaluation of a one-hour DNA extraction and loopmediated isothermal amplification assay for rapid detection of phytoplasmas. Plant Pathol. 59: 465-471. https://doi.org/10.1111/j.1365-3059.2009.02233.x
  94. Torrance, L. 1998. Developments in serological methods to detect and identify plant viruses. Plant Cell Tiss. Org. Cult. 52: 27-32. https://doi.org/10.1023/A:1005943823182
  95. Uttenthaler, E., Schraml, M., Mandel, J. and Drost, S. 2001. Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids. Biosens. Bioelectron. 16: 735-743. https://doi.org/10.1016/S0956-5663(01)00220-2
  96. van der Want, J. P. H. and Dijkstra, J. 2006. A history of plant virology. Arch. Virol. 151:1467-1498. https://doi.org/10.1007/s00705-006-0782-3
  97. Vaskova, D., Spak, J., Klerks, M. M., Schoen, C. D., Thompson, J. R. and Jelkmann, W. 2004. Real-time NASBA for detection of Strawberry vein banding virus. Eur. J. Plant Pathol. 110: 213-221. https://doi.org/10.1023/B:EJPP.0000015378.27255.12
  98. Vemulapati, B., Druffel, K. L., Husebye, D., Eigenbrode, S. D. and Pappu, H. R. 2014. Development and application of ELISA assays for the detection of two members of the family Luteoviridae infecting legumes: Pea enation mosaic virus (genus Enamovirus) and Bean leafroll virus (genus Luteovirus). Annu. Appl. Biol. 165: 130-136. https://doi.org/10.1111/aab.12126
  99. Vidaver, A. K. and Lambrecht, P. A. 2004. Bacteria as plant pathogens. The Plant Health Instructor. www.apsnet.org/.../PathogenGroups/Pages/Bacteria.aspx (Accessed Jul. 20, 2014).
  100. Wang, B., Ma, Y., Zhang, Z., Wu, Z., Wu, Y., Wanga, Q. and Li, M. 2011. Potato viruses in China. Crop Protect. 30: 1117-1123. https://doi.org/10.1016/j.cropro.2011.04.001
  101. Wang, D., Coscoy, L., Zylberberg, M., Avila, P. C., Boushey, H. A. and Ganem, D. 2002. Microarray-based detection and genotyping of viral pathogens. Proc. Natl. Acad. Sci. 99: 15687-15692. https://doi.org/10.1073/pnas.242579699
  102. Wang, D., Urisman, A., Liu, Y. T., Springer, M., Ksiazek, T. G., Erdman, D. D., Mardis, E. R., Hickenbotham, M., Magrini, V., Eldred, J., Latreille, J. P., Wilson, R. K., Ganem, D. and DeRisi, J. L. 2003. Viral discovery and sequence recovery using DNA microarrays. PLoS Biol. 1: 257-260.
  103. Webster, C. G., Wylie, J. S. and Jones, M. G. K., 2004. Diagnosis of plant viral pathogens. Curr. Sci. 86: 1604-1607.
  104. Yang, J.-G., Wang, F.-L., Chen, D.-X., Shen, L.-L., Qian, Y.-M., Liang, J. Y., Zhou, W.-C. and Yan, T.-H. 2012. Development of a one-step immunocapture real-time RT-PCR assay for detection of Tobacco Mosaic Virus in Soil. Sensors 12: 16685-16694. https://doi.org/10.3390/s121216685
  105. Yardimci, B. C. N. and Culal-Klllc, H. 2011. Detection of viruses infecting stone fruits in Western mediterranean region of Turkey. Plant Pathology J. 27: 44-52. https://doi.org/10.5423/PPJ.2011.27.1.044
  106. Zan, X., Sitasuwana, P., Powellb, J., Dreherb, T. W. and Wang, Q. 2012. Polyvalent display of RGD motifs on Turnip yellow mosaic virus for enhanced stem cell adhesion and spreading. Acta Biomater. 8: 2978-2985. https://doi.org/10.1016/j.actbio.2012.04.027
  107. Zhang, Y., Yin, J., Li, G., Li, M., Huang, X., Chen, H., Zhao, W. and Zhu, S. 2010. Oligonucleotide microarray with a minimal number of probes for the detection and identification of thirteen genera of plant viruses. J. Virol. Methods 167: 53-60. https://doi.org/10.1016/j.jviromet.2010.03.010

Cited by

  1. Viruses infecting common bean (Phaseolus vulgaris L.) in Tanzania: A review on molecular characterization, detection and disease management options vol.12, pp.18, 2017, https://doi.org/10.5897/AJAR2017.12236
  2. by Molecular Hybridization Using a Genus-Probe vol.108, pp.12, 2018, https://doi.org/10.1094/PHYTO-04-18-0146-R