References
- R. P. Agarwal, Y. J. Cho, R. Saadati, and S. Wang, Nonlinear L-fuzzy stability of cubic functional equations, J. Inequal. Appl. 2012 (2012), no. 77, 19 pp. https://doi.org/10.1186/1029-242X-2012-19
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- E. Baktash, Y. J. Cho, M. Jalili, R. Saadati, and S. M. Vaezpour, On the stability of cubic mappings and quadratic mappings in random normed spaces, J. Inequal. Appl. 2008 (2008), Article ID 902187, 11 pp.
- Y. J. Cho, M. Eshaghi Gordji, and S. Zolfaghari, Solutions and stability of generalized mixed type QC functional equations in random normed spaces, J. Inequal. Appl. 2010 (2010), Article ID 403101, 16 pp.
- Y. J. Cho, S. M. Kang, and R. Sadaati, Nonlinear random stability via fixed-point method, J. Appl. Math. 2012 (2012), Article ID 902931, 45 pp.
- Y. J. Cho, C. Park, Th. M. Rassias, and R. Saadati, Inner product spaces and functional equations, J. Comput. Anal. Appl. 13 (2011), no. 2, 296-304.
- Y. J. Cho, C. Park, and R. Saadati, Functional inequalities in non-Archimedean Banach spaces, Appl. Math. Lett. 23 (2010), no. 10, 1238-1242. https://doi.org/10.1016/j.aml.2010.06.005
- Y. J. Cho, Th. M. Rassias, and R. Saadati, Stability of Functional Equations in Random Normed Spaces, Springer, New York, 2013.
- Y. J. Cho and R. Saadati, Lattictic non-Archimedean random stability of ACQ functional equation, Adv. Difference Equ. 2011 (2011), no. 31, 21 pp. https://doi.org/10.1186/1687-1847-2011-21
- Y. J. Cho, R. Saadati, and J. Vahidi, Approximation of homomorphisms and derivations on non-Archimedean Lie C∗-algebras via fixed point method, Discrete Dyn. Nat. Soc. 2012 (2012), Article ID 373904, 9 pp.
- P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-86. https://doi.org/10.1007/BF02192660
- S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
- G. L. Forti, The stability of homomorphisms and amenability, with applications to functional equations, Abh. Math. Sem. Univ. Hamburg. 57 (1987), 215-226. https://doi.org/10.1007/BF02941612
- Z. Gajda and R. Ger, Subadditive multifunctions and Hyers-Ulam stability, in: General inequalities, 5 (Oberwolfach, 1986), 281-291, in: Internat. Schriftenreihe Numer. Math. 80, Birkhauser, Basel-Boston, MA, 1987.
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. https://doi.org/10.1006/jmaa.1994.1211
- M. Eshaghi Gordji and H. Khodaei, On the generalized Hyers-Ulam-Rassias stability of quadratic functional equations, Abstr. Appl. Anal. 2009 (2009), Article ID 923476, 11 pp.
- M. Eshaghi Gordji and H. Khodaei, Radical functional equations in C*-algebras, submitted.
- M. Eshaghi Gordji and H. Khodaei, Nearly radical quadratic functional equations in p-2-normed spaces, Abstr. Appl. Anal. 2012 (2012), Article ID 896032, 10 pp.
- M. Eshaghi Gordji, H. Khodaei, and H. M. Kim, Approximate quartic and quadratic mappings in quasi-Banach spaces, Int. J. Math. Math. Sci. 2011 (2011), Artical ID 734567, 18 pp.
-
M. Eshaghi Gordji and M. Parviz, On the Hyers-Ulam-Rassias stability of the functional equation f
$\sqrt{x^2+y^2}$ ) = f(x) + f(y), Nonlinear Funct. Anal. Appl. 14 (2009), no. 3, 413-420. - P. M. Gruber, Stability of isometries, Trans. Amer. Math. Soc. 245 (1978), 263-277. https://doi.org/10.1090/S0002-9947-1978-0511409-2
- D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
- S.-M. Jung, D. Popa, and Th. M. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Global Optim. 59 (2014), no. 1, 165-171. https://doi.org/10.1007/s10898-013-0083-9
-
D. S. Kang, On the stability of generalized quartic mappings in quasi-
$\beta$ -normed spaces, J. Inequal. Appl. 2010 (2010), Article ID 198098, 11 pp. - Pl. Kannappan, Functional Equations in Mathematical Analysis, Springer, New York, 2012.
- H. Khodaei, M. Eshaghi Gordji, S. S. Kim, and Y. J. Cho, Approximation of radical functional equations related to quadratic and quartic mappings, J. Math. Anal. Appl. 397 (2012), no. 1, 284-297.
- S. S. Kim, Y. J. Cho, and M. Eshaghi Gordji, On the generalized Ulam-Hyers-Rassias stability problem of radical functional equations, J. Inequal. Appl. 2012 (2012), no. 186, 13 pp. https://doi.org/10.1186/1029-242X-2012-13
- C. Park, M. Eshaghi Gordji, and Y. J. Cho, Stability and superstability of generalized quadratic ternary derivations on non-Archimedean ternary Banach algebras: a fixed point approach, Fixed Point Theory Appl. 2012 (2012), no. 97, 8 pp. https://doi.org/10.1186/1687-1812-2012-8
- C. Park, Y. J. Cho, and H. A. Kenary, Orthogonal stability of a generalized quadratic functional equation in non-Archimedean spaces, J. Comput. Anal. Appl. 14 (2012), no. 3, 526-535.
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130. https://doi.org/10.1023/A:1006499223572
- Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic, Dordrecht, 2003.
- Th. M. Rassias and J. Brzdek (Eds.), Functional Equations in Mathematical Analysis, Springer, New York, 2012.
- Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993. https://doi.org/10.1090/S0002-9939-1992-1059634-1
- J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), no. 1, 126-130. https://doi.org/10.1016/0022-1236(82)90048-9
- J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989), no. 3, 268-273. https://doi.org/10.1016/0021-9045(89)90041-5
-
J. M. Rassias and H. M. Kim, Generalized Hyers-Ulam stability for general additive functional equation in quasi-
$\beta$ -normed spaces, J. Math. Anal. Appl. 356 (2009), no. 1, 302-309. https://doi.org/10.1016/j.jmaa.2009.03.005 - K. Ravi, R. Murali, and M. Arunkumar, The generalized Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Inequal. Pure Appl. Math. 9 (2008), no. 1, Article 20, 5 pp.
- K. Ravi, J. M. Rassias, and R. Kodandan, Generalized Ulam-Hyers stability of an AQ-functional equation in quasi-beta-normed spaces, Math. Aeterna 1 (2011), no. 3-4, 217-236.
- K. Ravi, J. M. Rassias, and R. Murali, Orthogonal stability of a mixed type additive and quadratic functional equation, Math. Aeterna 1 (2011), no. 3-4, 185-199.
- F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
- J. Tober, Stability of Cauchy functional equation in quasi-Banach spaces, Ann. Polon. Math. 83 (2004), 243-255. https://doi.org/10.4064/ap83-3-6
- S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960; Problems in Modern Mathematics, Wiley, New York, 1964.
Cited by
- Remarks on solutions to a generalization of the radical functional equations vol.92, pp.5, 2018, https://doi.org/10.1007/s00010-018-0566-3
- Brzdȩk fixed point approach for generalized quadratic radical functional equations vol.20, pp.1, 2018, https://doi.org/10.1007/s11784-018-0527-4
- Approximate solution of generalized inhomogeneous radical quadratic functional equations in 2-Banach spaces vol.2019, pp.1, 2019, https://doi.org/10.1186/s13660-019-1973-2