References
-
F. Abdenur, C. Bonatti, and S. Crovisier, Nonuniform hyperbolicity for
$C^1$ -generic diffeomorphisms, Israel J. Math. 183 (2011), 1-60. https://doi.org/10.1007/s11856-011-0041-5 -
F. Abdenur and L. J. Diaz, Pseudo-orbit shadowing in the
$C^1$ topology, Discrete Contin. Dyn. Syst. 17 (2007), no. 2, 223-245. - C. Bonatti, L. J. Diaz, and M. Vianan, Dynamics beyond uniform hyperbolicity, A global geometric and probabilistic perspective, Encyclopedia of Mathematical Sciences, 102 Mathematical Physics, III. Springer-verlag, Berlin, 2005.
- C. Bonattio, S. Gan, and D. Yang, On the hyperoblicity of homoclinic classes, Discrete Contin. Dyn. Syst. 25 (2009), no. 4, 1143-1162. https://doi.org/10.3934/dcds.2009.25.1143
-
S. Crovisier, Periodic orbits and chain transitive sets of
$C^1$ -diffeomorphisms, Publ. Math. Inst. Hautes Etudes Sci. 104 (2006), 87-141. https://doi.org/10.1007/s10240-006-0002-4 -
A. Fakhari, K. Lee, and A. Tajbakhsh, Diffeomorphisms with
$L_p -shadowing property, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 1, 19-28. https://doi.org/10.1007/s10114-011-0050-7 - J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971), 301-308. https://doi.org/10.1090/S0002-9947-1971-0283812-3
- K. Lee, Hyperbolic sets with the strong limit shadowing property, J. Inequal. Appl. 6 (2001), no. 5, 507-517.
-
K. Lee, K. Moriyasu, and K. Sakai,
$C^1$ -stable shadowing diffeomorphism, Discrete Contin. Dyn. Syst. 22 (2008), no. 3, 683-697. https://doi.org/10.3934/dcds.2008.22.683 -
K. Lee and X. Wen, Shadowable chain transitive sets of
$C^1$ -generic diffeomorphisms, Bull. Korean Math. Soc. 49 (2012), no. 2, 263-270. https://doi.org/10.4134/BKMS.2012.49.2.263 - R. Mane, An ergodic closing lemma, Ann. of Math. 16 (1982), no. 3, 503-540.
-
R. Mane, A proof of the
$C^1$ stability conjecture, Inst. Hautes Etudes Sci. Publ. Math. 66 (1988), 161-210. - S. Yu. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Math. 1706, Spinger-Verlag, Berlin, 1999.
- S. Yu. Pilyugin, Sets of dynamical systems with various limit shadowing properties, J. Dynam. Differential Equations 19 (2007), no. 3, 747-775. https://doi.org/10.1007/s10884-007-9073-2
-
K. Sakai,
$C^1$ -stably shadowable chain components, Ergodic Theory Dyanam. Systems 28 (2008), no. 3, 987-1029.