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HYPERBOLICITY OF CHAIN TRANSITIVE SETS WITH

LIMIT SHADOWING

Abbas Fakhari, Seunghee Lee, and Khosro Tajbakhsh

Abstract. In this paper we show that any chain transitive set of a dif-
feomorphism on a compact C∞-manifold which is C1-stably limit shad-
owable is hyperbolic. Moreover, it is proved that a locally maximal chain
transitive set of a C1-generic diffeomorphism is hyperbolic if and only if
it is limit shadowable.

Transitive sets, homoclinic classes and chain components of a diffeomorphism
are natural candidates to replace the hyperbolic basic sets in nonhyperbolic
theory of differentiable dynamical systems, and many recent papers explored
their “hyperbolic-like” properties (for more details, see [2, 6, 8, 9, 14, 15]).

In this paper we study the chain transitive sets which are limit shadowable.
Let us be more precise. Let M be a compact C∞-manifold, and let Diff(M) be
the space of diffeomorphisms of M endowed with the C1-topology. Denote by
d the distance on M induced from a Riemannian metric on the tangent bundle
TM . For δ > 0, a sequence {xn}n∈Z in Λ is called a δ-limit chain if

lim
|n|→∞

d(f(xn), xn+1) = 0 and d(f(xn), xn+1) < δ

for any n ∈ Z. For a closed f -invariant set Λ ⊂ M , we say that f has the limit

shadowing property in Λ (or Λ is limit shadowable for f) if there exists δ > 0
such that for any δ-limit chain ξ = {xn}n∈Z in Λ there exists y ∈ Λ satisfying

d(fn(y), xn) → 0 as |n| → ∞.

We also say that the δ-limit chain ξ is limit shadowed by the point y. Note
that the limit shadowing property does not imply the shadowing property.
For example, let f be a diffeomorphism on the unit circle S

1 with coordinates
x ∈ [0, 1) which has only three fixed points 0, 13 and 2

3 such that 0 is source, 2
3

is sink and 1
3 is nonhyperbolic. Then it is clear that f has the limit shadowing

property in S
1 but it does not satisfy the shadowing property.
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Definition. Let Λ be an invariant set for f ∈ Diff(M). We say that Λ admits
a dominated splitting if the tangent bundle TΛM has a Df -invariant splitting
E ⊕ F such that for some C > 0 and 0 < λ < 1,

‖Dfn|E(x)‖ · ‖Df−n|F (fn(x))‖ ≤ Cλn

for all x ∈ Λ and n ≥ 0. The set Λ is hyperbolic if the subbundle E is uniformly
contracting and the subbundle F is uniformly expanding; i.e., for some C > 0
and 0 < λ < 1,

‖Dfn|Es(x)‖ ≤ Cλn and ‖Df−n|Eu(fn(x))‖ ≤ Cλn

for all x ∈ Λ and n ≥ 0.

Let Ph(f) be the set of all hyperbolic periodic points of f . It is well known
that for any p ∈ Ph(f) with period k, the sets

W s(p) = {x ∈ M : fkn(x) → p as n → ∞}, and

Wu(p) = {x ∈ M : f−kn(x) → p as n → ∞}

are C1-injectively immersed submanifolds of M . A point x ∈ W s(p)∩Wu(p) is
called a homoclinic point of f associated to p, and it is said to be a transversal

homoclinic point of f if the above intersection is transversal at x; i.e., x ∈
W s(p)⋔Wu(p). The closure of the transversal homoclinic points of f associated
to the orbit of p is called the homoclinic class of f associated to p and denoted
by Hf (p). Let q be another hyperbolic periodic point of f . The two points p

and q are called homoclinically related, and write p ∼ q if

W s(p)⋔Wu(q) 6= ∅ and Wu(p)⋔W s(q) 6= ∅.

By Smale’s transverse homoclinic point theorem, Hf (p) coincides with the clo-
sure of the set of hyperbolic periodic points q of f such that p ∼ q. Note that
if p is a hyperbolic periodic point of f , then there is a neighborhood U of p
and a C1-neighborhood U(f) of f such that for any g ∈ U(f) there exists a
unique hyperbolic periodic point pg of g in U with the same period and the
same index as those of p. The point pg is called the continuation of p.

Definition. We say that f has the C1-stably limit shadowing property in Λ
(or Λ is C1-stably limit shadowable for f) if there are a C1-neighborhood U(f)
of f and a compact neighborhood U of Λ such that

(1) Λ = Λf (U) =
⋂

n∈Z
fn(U); i.e., Λ is locally maximal in U ,

(2) Λg is limit shadowable for g ∈ U(f),

where Λg =
⋂

n∈Z
gn(U) is the continuation of Λ = Λf (U). In this case, we say

that Λ is C1-stably limit shadowable with respect to U and U(f).

It is known that any locally maximal hyperbolic set is C1-stably limit shad-
owable (see [13]).

For given δ > 0, a sequence {xi}bi=a (−∞ ≤ a < b ≤ ∞), is called a δ-pseudo

orbit of f if d(f(xi), xi+1) < δ for all a ≤ i ≤ b − 1. A closed f -invariant set
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Λ ⊂ M is chain transitive if for any two points x, y ∈ Λ and any δ > 0, there
is a finite δ-pseudo orbit {xi}bi=a ⊂ Λ of f with xa = x and xb = y.

In this paper, we first study the hyperbolicity of a chain transitive set by
making use of the limit shadowing property under C1-open condition. More
precisely, we have the following theorem.

Theorem A. A chain transitive set Λ is C1-stably limit shadowable if and

only if it is hyperbolic.

A subset R ⊂ Diffr(M) (r ≥ 1) is called residual if it contains the intersection
of a countable family of open and dense subsets of Diffr(M). A property “P” is
said to be Cr-generic if “P” holds for all diffeomorphisms in a residual subset
of Diffr(M).

Recently, Abdenur and Dı́az in [2] obtained a necessary and sufficient condi-
tion for a locally maximal transitive set Λ of a C1-generic diffeomorphism f to
be hyperbolic as follow: either Λ is hyperbolic, or there are a C1-neighborhood
U(f) of f and a neighborhood V of Λ such that every g ∈ U(f) does not have
the shadowing property on V .

As a second result of the paper, we get the following result for the limit
shadowable chain transitive sets.

Theorem B. There exists a residual subset R of Diff1(M) such that a locally

maximal chain transitive set Λ of f ∈ R is limit shadowable if and only if it is

hyperbolic.

1. Proof of Theorem A

The next lemma, known as Franks’ Lemma, is a simple yet powerful result
allowing us to perturb the tangent map along a finite set with an arbitrarily
small support.

Lemma 1.1 (Franks’ Lemma). Let U(f) be any given C1-neighbor-hood of

f . Then there exist ǫ > 0 and a C1-neighborhood U0(f) of U(f) of f such

that for given g ∈ U0(f), a finite set {x1, x2, . . . , xN}, a neighborhood U of

{x1, x2, . . . , xN} and linear maps Li : Txi
M → Tg(xi)M satisfying ‖Li −

Dxi
g‖ ≤ ǫ for all 1 ≤ i ≤ N , there exists g̃ ∈ U(f) such that g̃(x) = g(x)

if x ∈ {x1, x2, . . . , xN} ∪ (M \ U) and Dxi
g̃ = Li for all 1 ≤ i ≤ N .

In this section, we will prove Theorem A by using the technique developed
by Mañé in [11]. To use it, we need the following lemma.

Lemma 1.2. If f is C1-stably limit shadowable in a chain transitive set Λ with

respect to a neighborhood U of Λ and a C1-neighborhood U(f) of f, then any

periodic point of g ∈ U(f) in Λg is hyperbolic.

Proof. Let ǫ > 0 and U0(f) ⊂ U(f) are given by Lemma 1.1. Suppose that
there exists a non-hyperbolic periodic point q ∈ Λg for some g ∈ U0(f) (since
Λ is locally maximal, reducing U(f) if necessary, we may assume that q is
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contained in the interior of U). To simplify the notations, we assume that
g(q) = q (other case is similar). Then the use of Lemma 1.1, one may construct
a diffeomorphism g1 ∈ U0(f) C

1-nearby g possessing either

(i) a g1-invariant normally hyperbolic small arc Iq ⊂ U such that g1|kIq
=

id for some k > 0; or
(ii) a g1-invariant normally hyperbolic small circle Cq ⊂ U with a small

diameter and center at q such that g1|Cq
is conjugated to an irrational

rotation.

Since Iq and C1 are g1-invariant, we see that Iq ⊂ Λg and Cq ⊂ Λg. Since
g1 has the limit shadowing property on Λg, both gk1 |Iq

and g1|Cq
must have

the limit shadowing property. By the C1-stablity of limit shadowing, this is a
contradiction. This completes the proof of Lemma 1.2. �

Lemma 1.3. If f has the limit shadowing property in a chain transitive set Λ,
then for any p, q ∈ Λ ∩ Ph(f),

W s(p) ∩Wu(q) 6= ∅ and Wu(p) ∩W s(q) 6= ∅.

Proof. Let p and q be two periodic points of f in Λ. Take a constant δ > 0
such that every δ-pseudo orbit in Λ is limit shadowed by a point in Λ. Since
Λ is chain transitive, there is a δ-pseudo orbit {x0 = p, x1, . . . , xn = q} in Λ.
Construct a sequence

ξ = {. . . , p, p, x0, x1, . . . , xn, q, q, . . .}.

Then ξ is a δ-limit chain in Λ. Since Λ is limit shadowable for f , we can choose
a point y ∈ Λ such that

d(fn(y), xn) → 0 as |n| → ∞.

For η > 0, we can choose n1 > 0 sufficiently large such that

f−n(y) ∈ Wu
η (p) and fn(y) ∈ W s

η (q)

for all n ≥ n1. Therefore

y ∈ fn(Wu
η (p)) and y ∈ f−n(W s

η (q)).

Thus y ∈ Wu(p) ∩W s(q), and so Wu(p) ∩W s(q) 6= ∅. Similarly we can show
that Wu(q) ∩W s(p) 6= ∅. �

Remark 1.4. Using the two lemmas above one can deduce that the index of
periodic points in Λ doesn’t change. In fact, if there are two periodic points p
and q in Λ with different indices, then the same happens for a Kupka-Smale dif-
feomorphism g sufficiently close to f . On the other hand, by Lemma 1.3, stable
and unstable manifolds of pg and qq, the continuation of p and q respectively,
should intersect each other. This contradicts to g being Kupka-Smale.

By Proposition II.1 in [11] and two lemma above we have the following
proposition which plays an essential rule in our proof.
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Proposition 1.5. If a chain transitive set Λ is C1-stably limit shadowable,

then there exist a neighborhood U0(f) of f , a constant 0 < λ < 1 and a natural

number m > 0 such that

(1) for any g ∈ U0(f), if q ∈ Λg is a periodic point of g with period π(q),
then

π(q)−1∏
i=0

‖Dgim(q)g
m|Es(gim(q))‖ < λπ(q) and

π(q)−1∏
i=0

‖Dg−im(q)g
−m|Es(gim(q))‖ < λπ(q),

(2) Per(g) admits a dominated splitting E ⊕ F with dimE = index(p).

Before proving the hyperbolicity of Λ, we recall the Mañé’s Ergodic Closing
Lemma obtained in [11]. Denote by Bǫ(f, x) an ǫ-tubular neighborhood of the
f -orbit of x; that is,

Bǫ(f, x) = {y ∈ M : d(fn(x), y) < ǫ for some n ∈ Z}.

We say that a point x ∈ M is well closable for f ∈ Diff(M) if for any ǫ > 0
there are g ∈ Diff(M) with d1(f, g) < ǫ and p ∈ M such that p ∈ P (g), g = f

on M − Bǫ(x, f) and d(fn(x), gn(p)) ≤ ǫ for any 0 ≤ n ≤ π(p) and d1 is the
C1-metric. Let Σf denote the set of well closable points of f . Then we can
state the Closing Lemma as follows.

Lemma 1.6 (Mañé Ergodic Closing Lemma, [11]). For any f -invariant prob-

ability measure µ on M , we have µ(Σf ) = 1.

To complete the proof of Theorem A, it is sufficient to show the following.

Theorem 1.7. The set Per(f) is hyperbolic.

Proof. By Proposition 1.5(2), we know that Per(f) admits a dominated split-
ting E⊕F with dimE = index(p). We will show the hyperbolicity of direction
E, the other one can be treated similarly. To show this, it is enough to prove
that

lim inf
n→∞

‖Dfn|E(x)‖ = 0

for all x ∈ Per(f). Suppose not. Then by Birkhooff’s Theorem and Mañé’s
Ergodic Closing Lemma, we can find a point z ∈ Λ ∩ Σf such that

lim
n→∞

1

n

n−1∑
i=0

log ‖Dfim(z)f
m|E(fim(z))‖ ≥ 0.

By Proposition 1.5, z can not be a periodic point of f . Let m and 0 < λ < 1
be given by Proposition 1.5, and take λ < λ0 < 1 and n0 > 0 such that

1

n

n−1∑
i=0

log ‖Dfim(z)f
m|E(fim(z))‖ ≥ log λ0
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for n > n0. By Mañé’s Ergodic Closing Lemma, we may find g̃ in a connected
neighborhood U0(f) of f and z̃ ∈ Λg̃ ∩ P (g̃) nearby z such that

(1) λ
π(z̃)
0 ≤

π(z̃)−1∏
i=0

‖Dg̃im(z̃)g̃
m|E(g̃im(z̃))‖.

On the other hand, by Proposition 1.5, we see that

π(z̃)−1∏
i=0

‖Dg̃im(z̃)g̃
m|E(g̃im(z̃))‖ < λπ(z̃).

This contradicts (1), and so E is uniformly contracting under Df . �

2. Proof of Theorem B

We begin the section by a remark assembling the behavior of a Kupka-Smale
diffeomorphism with the limit shadowing.

Remark 2.1. As mentioned in the previous section, if f has limit shadowing
on Λ, then any two periodic points p and q in Λ have the same index and
their stable and unstable manifolds cut each other. If f is a Kupka-Smale
diffeomorphism, then one can ensure the intersections are transverse. In other
word, in this case p ∼ q.

Lemma 2.2 ([10, Lemma 2.2]). There is a residual set R0 ⊂ Diff(M) such

that every f ∈ R0 satisfies the following property: For any closed f -invariant

set Λ ⊂ M , if there are a sequence of diffeomorphisms fn converging to f

and a sequence of hyperbolic periodic orbits Pn of fn with index k verifying

limn→∞ Pn = Λ, then there is a sequence of hyperbolic periodic orbits Qn of

f with index k such that Λ is the Hausdorff limit of Qn, where the index of a

hyperbolic periodic orbit P is the dimension of the stable manifold of P .

To complete the proof of Theorem B, we let R = R0∩KS, where KS denotes
the set of Kupka-Smale diffeomorphisms. The following proposition is crucial
in the proof of the theorem.

Proposition 2.3. Let f ∈ R, and let Λ be a limit shadowable chain transitive

set of f which is locally maximal. Then there exist constants m > 0 and

0 < λ < 1 such that for any periodic point p ∈ Λ,

π(p)−1∏
i=0

‖Dfm|Es(fim(p))‖ < λπ(p),

π(p)−1∏
i=0

‖Df−m|Euf−m(p)‖ < λπ(p)

and

‖Dfm|Es(p)‖ · ‖Df−m|Eufm(p)‖ < λ2.
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Proof. Since f ∈ R0, all periodic points in Λ have the same index and Λ is
locally maximal, we can choose a C1-neighborhood U(f) of f and a neighbor-
hood U of Λ such that every g ∈ U(f) has no nonhyperbolic periodic orbit
which is contained in U . In fact, if there are non-hyperbolic periodic points,
then by using Franks Lemma one can produce periodic points of different index
in U for diffeomorphisms sufficiently close to f . Since f ∈ R, the same holds
for f . We arrive at the contradiction by Remark 2.1.

By applying Lemma II.3 in [11], we get constants K > 0, m0 ∈ Z
+ and

0 < λ < 1 such that for any periodic point p ∈ Λ with π(p) ≥ K,

π(p)−1∏
i=0

‖Dfm0 |Es(fim0(p))‖ < λπ(p),

π(p)−1∏
i=0

‖Df−m0|Euf−m0 (p)‖ < λπ(p)

and

‖Dfm0|Es(p)‖ · ‖Df−m0|Eu(fm(p))‖ < λ2.

Let Λ0 be the set of all periodic points in Λ whose periods are less than K.
Since every periodic point of f is hyperbolic, there are only a finite number of
periodic points in Λ0, and so Λ0 is hyperbolic for f . Let k be a positive integer
such that

‖Dfkm0 |Es(x)‖ < λ and ‖Df−km0 |Eu(x)‖ < λ

for all x ∈ Λ0. If we let m = km0, then we know that m and λ are the required
constants satisfying Proposition 2.3. �

For any periodic point p of a diffeomorphism f , we can see that µp given by

µp =
1

π(p)

π(p)−1∑
i=0

δfi(p)

is a f -invariant ergodic probability measure concentrated onM . Finally we will
use the following proposition comes from the Mane’s ergodic closing lemma in
[11] which gives the measure theoretical viewpoint of the approximation by
periodic orbits.

Proposition 2.4. There exists a residual subset R1 of Diff1(M) such that for

any f ∈ R1 and for any f -invariant ergodic probability measure µ of f there is

a sequence of hyperobolic periodic points pn such that

• µpn
→ µ in weak∗ topology,

• O(p) → Supp(µ) in Hausdorff metric.

Proof of Theorem B. Put R2 = R∩R1, and let f ∈ R2 has the limit shadowing
property in Λ. Now we will prove that the dominated splitting E ⊕ F given
by Proposition 2.3 is in fact hyperbolic. First we show that E is uniformly
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contracting under Df . To this end, it suffices by using Lemma I.5 in [12], to
prove that ∫

log(‖Dfm|E(x)‖)dµ < 0

for every f -invariant ergodic probability measure µ. Since f ∈ R1 there exists
a sequence O(pn) of periodic orbits of f with O(pn) → Λ in the Hausdorff
topology and periodic measures µpn

concentrated on the orbit of pn converges
to µ0 in weak∗-topology. By the local maximality of Λ, for sufficiently large n,
the periodic orbits O(pn) are contained in Λ. On the other hand, if we apply
Proposition 2.3, then we have∫

log(‖Dfm|E(x)‖)dµn < logλ

for sufficiently large n. Since µn converges to µ0 in the weak* topology, we
have ∫

log(‖Dfm|E(x)‖)dµn →

∫
log(‖Dfm|E(x)‖)dµ0

as n → ∞. Hence we get
∫
log(‖Dfm|E(x)‖)dµ0 < 0. The contradiction proves

that Df is contracting on E. Similarly, one can show that Df is expanding on
F . �
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