DOI QR코드

DOI QR Code

Drying Characteristics of High Moisture Low Rank Coal using a Steam Fluidized-bed Dryer

스팀 유동층 건조기를 이용한 고수분 저등급 석탄의 건조 특성

  • Kim, Gi Yeong (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Rhee, Young-Woo (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Park, Jae Hyeok (Chemical and Biomolecular Engineering, Yonsei University) ;
  • Shun, Dowon (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Bae, Dal-Hee (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Shin, Jong-Seon (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Ryu, Ho-Jung (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Park, Jaehyeon (Greenhouse Gas Laboratory, Korea Institute of Energy Research)
  • 김기영 (충남대학교 에너지과학기술대학원) ;
  • 이영우 (충남대학교 에너지과학기술대학원) ;
  • 박재혁 (연세대학교 화공생명공학과) ;
  • 선도원 (한국에너지기술연구원 온실가스연구실) ;
  • 배달희 (한국에너지기술연구원 온실가스연구실) ;
  • 신종선 (한국에너지기술연구원 온실가스연구실) ;
  • 류호정 (한국에너지기술연구원 온실가스연구실) ;
  • 박재현 (한국에너지기술연구원 온실가스연구실)
  • Received : 2014.08.06
  • Accepted : 2014.09.19
  • Published : 2014.09.30

Abstract

In this study, Indonesia low rank coal, which has moisture content of around 26%, is dried less than 5% by using a laboratory-scale (batch type) steam fluidized-bed dryer in order to produce the low-moisture, high rank coal. Normally, CCS (carbon capture and storage) process discharges $CO_2$ and steam mixture gas around $100-150^{\circ}C$ of temperature after regeneration reactor. The final purpose of this research is to dry low rank coal by using the outlet gas of CCS process. At this stage, steam is used as heat source for drying through the heat exchanger and $CO_2$ is used as fluidizing gas to the dryer. The experimental variables were the steam flow rate ranging from 0.3 to 1.1 kg/hr, steam temperature ranging from 100 to $130^{\circ}C$, and bed height ranging from 9 to 25 cm. The characteristics of the coal, before and after drying, were analyzed by a proximate analysis, the heating value analysis and particle size analysis. In summary, the drying rate of low rank coal was increased as steam flow rate and steam temperature increased and increased as bed height decreased.

본 연구에서는 고수분 저등급 석탄을 저수분 석탄으로 만들기 위하여 실험실 규모의 회분식 스팀 유동층 건조기를 사용하여 수분이 약 26%함유된 인도네시아산 저등급 석탄을 5% 이하로 건조하였다. 일반적으로 이산화탄소 포집 및 저장기술(carbon capture and storage, CCS)은 $CO_2$를 재생하는 공정에서 $100{\sim}150^{\circ}C$의 스팀과 $CO_2$혼합가스를 배출한다. 이때 배출되는 가스의 열을 사용하여 저등급 석탄을 건조하는 것이 본 연구의 최종 목적이다. 이를 위하여 본 연구에서는 건조의 열원으로 스팀을 사용하고, 유동화 가스는 $CO_2$를 사용하여 저등급 석탄을 건조하였다. 연구에 사용한 스팀의 유량은 0.3~1.1 kg/hr, 온도는 $100~130^{\circ}C$, 석탄의 층높이는 9~25 cm로 변화시켰다. 건조 후 석탄의 특성 변화는 공업분석, 발열량분석 그리고 입자크기 분석을 통하여 확인하였다. 변수 실험을 수행한 결과 원탄의 건조속도는 스팀의 유량과 온도가 증가함에 따라 증가하였고, 층높이가 감소할수록 건조속도가 증가하였다.

Keywords

References

  1. Volkan S. Ediger. Geopolitics of Coal and Global Environment. Pittsburgh Coal Conference 2010, pp. 185-217 (2010).
  2. Kim, T. J., Kim, S. D., Lim, J. H., Rhee, Y. W., and Lee, S. H., "Characteristics of Coal Water Fuel by Various Drying Coals, Surfactants and Particle Size Distribution Using Low Rank Coal," Clean Technol., 19(4), 464-468 (2013). https://doi.org/10.7464/ksct.2013.19.4.464
  3. Wang, D., Zhong, X., Gu, J., and Qi, X.. "Changes in Active Functional Groups during Low-temperature Oxidation of Coal," Mining Sci. Technol. (China), 20(1), 35-40 (2010) https://doi.org/10.1016/S1674-5264(09)60157-5
  4. Hwang, S. H., Kim, S. K., Park, J. Y., Lee, D. K., Lee, S. H., and Rhee, Y. W., "Kinetic study on Low-rank Coal Including $K_2CO_3$, $Na_2CO_3$, $CaCO_3$ and Dolomite Gasification under $CO_2$ Atmosphere," Clean Technol., 20(1), 64-71 (2014). https://doi.org/10.7464/ksct.2014.20.1.064
  5. Karthikeyan, M., Zhonghua, W., and Mujumdar, A. S. "Low-Rank Coal Drying Technologies-Current Status and New Developments," Dry. Technol., 27(3), 403-415 (2009). https://doi.org/10.1080/07373930802683005
  6. Lisboa, M. H., Vitorino, D. S., Delaiba, W. B., Finzer, J. R. D., and Barrozo, M. A. S. "A Study of Particle Motion in Rotary Dryer," Brazilian J. Chem. Eng., 24(3), 365-374 (2007). https://doi.org/10.1590/S0104-66322007000300006
  7. Levy, E. K., Caram, H. S., Yao, Z., Wei, Z., and Sarunac, N. "Kinetics of Coal Drying in Bubbling Fluidized Beds," In Proceedings Fifth World Congress on Particle Technology, pp. 1-6 (2006).
  8. Kim, S. D., Lee, S. H., Rhim, Y. J, Choi, H. K., Lim, S. H., Chun, D. H., and Yoo, J. H. "Drying Characteristic of High Moisture Coal using a Flash Dryer," Korean Chem. Eng. Res., 50(1), 106-111 (2012). https://doi.org/10.9713/kcer.2012.50.1.106
  9. Park, I. S., Chun, D. H., Jo, W. T., You, J. H., Lee, S. H., and Rhee, Y. W., "Stabilization Characteristics of Upgraded Coal Using Palm Oil Residues," Clean Technol., 19(4), 469-475 (2013). https://doi.org/10.7464/ksct.2013.19.4.469
  10. Chun, D. H., Park, I. S., Cho, W. T., Jo, E. M., Kim, S. D., Choi, H. K., Yoo, J., Lim, J. H., Rhim, Y. J., and Lee, S. "The Stabilization Study of Low-rank Coal by Vapor Adsorption," Clean Technol., 19(1), 38-43 (2013). https://doi.org/10.7464/ksct.2013.19.1.038
  11. Kinoshita, S., Yamamoto, S., Deguchi, T., and Shigehisa, T. "Demonstration of Upgraded Brown Coal (UBC) Process by 600 Tonnes/Day Plant," Kobelco Technol. Rev., 29, 93-8 (2010).
  12. Mangena, S. J., De Korte, G. J., McCrindle, R. I., and Morgan, D. L. "The Amenability of some Witbank Bituminous Ultra Fine Coals to Binderless Briquetting," Fuel Process. Technol., 85(15), 1647-1662 (2004). https://doi.org/10.1016/j.fuproc.2003.12.011
  13. Klutz, H. J., Moser, C., and Bargen, N. V. "The RWE Power WTA Process (Fluidized Bed Drying) as a Key for Higher Efficiency," Gornictwo i Geoinzynieria, 35, 147-153 (2011).
  14. Yi, C. K. "Advances of Post-combustion Carbon Capture Technology by Dry Sorbent," Korean Chem. Eng. Res., 48(2), 140-146 (2010).
  15. Soponronnarit, S., Prachayawarakorn, S., Rordprapat, W., Nathakaranakule, A., and Tia, W. "A Superheated-steam Fluidized-bed Dryer for Parboiled Rice: Testing of a Pilotscale and Mathematical Model Development," Dry. Technol., 24(11), 1457-1467 (2006). https://doi.org/10.1080/07373930600952800
  16. Pakowski, Z., and Adamski, R. "On Prediction of the Drying Rate in Superheated Steam Drying Process," Dry. Technol., 29(13), 1492-1498 (2011). https://doi.org/10.1080/07373937.2011.576320
  17. Liu, Y., Aziz, M., Kansha, Y., and Tsutsumi, A. "A Novel Exergy Recuperative Drying Module and its Application for Energy-saving Drying with Superheated Steam," Chem. Eng. Sci., 100, 392-401 (2013). https://doi.org/10.1016/j.ces.2013.01.044
  18. Tahmasebi, A., Yu, J., and Bhattacharya, S. "Chemical Structure Changes Accompanying Fluidized-bed Drying of Victorian Brown Coals in Superheated Steam, Nitrogen, and Hot Air," Energy Fuels, 27(1), 154-166 (2012).
  19. Bongers, G. D., Jackson, W. R., and Woskoboenko, F. "Pressurised Steam Drying of Australian Low-rank Coals: Part 2. Shrinkage and Physical Properties of Steam Dried Coals, Preparation of Dried Coals with Very High Porosity," Fuel Process. Technol., 64(1), 13-23 (2000). https://doi.org/10.1016/S0378-3820(99)00070-3
  20. Kunii, D., and Levenspiel, O., Fluidization Engineering, pp. 68-71 (1969).
  21. Subramani, H. J., Balaiyya, M., and Miranda, L. R. "Minimum Fluidization Velocity at Elevated Temperatures for Geldart's Group-B Powders," Exp. Therm. Fluid Sci., 32(1), 166-173 (2007). https://doi.org/10.1016/j.expthermflusci.2007.03.003
  22. Woo, M. W., Stokie, D., Choo, W. L., and Bhattacharya, S. "Master Curve Behavior in Superheated Steam Drying of Small Porous Particles," Appl. Therm. Eng., 52(2), 460-467 (2012).
  23. Hoehne, O., Lechner, S., Schreiber, M., and Krautz, H. J. "Drying of Lignite in a Pressurized Steam Fluidized Bed- Theory and Experiments," Dry. Technol., 28(1), 5-19 (2009). https://doi.org/10.1080/07373930903423491
  24. Chen, Z., Agarwal, P. K., and Agnew, J. B. "Steam Drying of Coal. Part 2. Modeling the Operation of A Fluidized Bed Drying Unit," Fuel, 80(2), 209-223 (2001). https://doi.org/10.1016/S0016-2361(00)00081-8
  25. Taechapairoj, C., Dhuchakallaya, I., Soponronnarit, S., Wetchacama, S., and Prachayawarakorn, S. "Superheated Steam Fluidised Bed Paddy Drying," J. Food Eng., 58(1), 67-73 (2003). https://doi.org/10.1016/S0260-8774(02)00335-7

Cited by

  1. 저급탄 건조공정이 결합된 석탄화력 발전플랜트의 성능해석 vol.20, pp.5, 2014, https://doi.org/10.5293/kfma.2017.20.5.021
  2. Development of Treatment Process for Residual Coal from Biosolubilization vol.24, pp.2, 2014, https://doi.org/10.7464/ksct.2018.24.2.119