DOI QR코드

DOI QR Code

Preparationand Characterization of Rutile-anatase Hybrid TiO2 Thin Film by Hydrothermal Synthesis

  • Kwon, Soon Jin (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Song, Hoon Sub (Department of Chemical Engineering, University of Waterloo) ;
  • Im, Hyo Been (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Nam, Jung Eun (Advanced Convergence Research Center, Daegu Gyeongbuk Institute of Science & Technology) ;
  • Kang, Jin Kyu (Advanced Convergence Research Center, Daegu Gyeongbuk Institute of Science & Technology) ;
  • Hwang, Taek Sung (Department of Chemical Engineering, Chungnam National University) ;
  • Yi, Kwang Bok (Department of Chemical Engineering Education, Chungnam National University)
  • Received : 2014.06.18
  • Accepted : 2014.07.17
  • Published : 2014.09.30

Abstract

Nanoporous $TiO_2$ films are commonly used as working electrodes in dye-sensitized solar cells (DSSCs). So far, there have been attempts to synthesize films with various $TiO_2$ nanostructures to increase the power-conversion efficiency. In this work, vertically aligned rutile $TiO_2$ nanorods were grown on fluorinated tin oxide (FTO) glass by hydrothermal synthesis, followed by deposition of an anatase $TiO_2$ film. This new method of anatase $TiO_2$ growth avoided the use of a seed layer that is usually required in hydrothermal synthesis of $TiO_2$ electrodes. The dense anatase $TiO_2$ layer was designed to behave as the electron-generating layer, while the less dense rutile nanorods acted as electron-transfer pathwaysto the FTO glass. In order to facilitate the electron transfer, the rutile phase nanorods were treated with a $TiCl_4$ solution so that the nanorods were coated with the anatase $TiO_2$ film after heat treatment. Compared to the electrode consisting of only rutile $TiO_2$, the power-conversion efficiency of the rutile-anatase hybrid $TiO_2$ electrode was found to be much higher. The total thickness of the rutile-anatase hybrid $TiO_2$ structures were around $4.5-5.0{\mu}m$, and the highest power efficiency of the cell assembled with the structured $TiO_2$ electrode was around 3.94%.

나노다공성 $TiO_2$ 필름은 주로 염료감응형 태양전지의 작동전극으로 사용된다. 지금까지 염료감응형 태양전지의 광전환효율을 높이기 위해 $TiO_2$ 나노구조체에 대한 다양한 연구가 시도되어왔다. 본 연구에서는 수열합성법을 이용하여 FTO glass 위에 루타일 $TiO_2$ 나노로드를 수직적으로 성장시켰고 그 위에 아나타제 $TiO_2$ 필름을 재 합성하였다. 이 새로운 방법은 아나타제 $TiO_2$ 합성시 요구되는 시드층 합성단계를 피할 수 있었다. 밀집한 아나타제 $TiO_2$ 층은 전자생성층으로써 고안되었고 시드층 대신 합성된 루타일 $TiO_2$ 나노로드는 생성된 전자들이 FTO glass로 이동하는 통로역할을 하게 되었다. 전자이동률을 증진시키기 위해 루타일 나노로드에 $TiCl_4$ 수용액을 이용하여 표면 처리하였고 열처리 후 표면 위에 얇은 아나타제 $TiO_2$ 필름을 형성시켰다. 합성된 루타일-아나타제 $TiO_2$ 구조체의 두께는 $4.5-5.0{\mu}m$이고 셀 테스트 결과 3.94%의 광전환효율을 얻게 되었다. 이는 루타일 $TiO_2$ 나노로드 전극과 비교했을 때 광전환효율이 상당히 향상되는 것을 확인할 수 있었다.

Keywords

References

  1. Granovskii, M., Dincer, I., and Rosen, M. A., "Greenhouse Gas Emissions Reduction by Use of Wind and Solar Energies for Hydrogen and Electricity Production: Economic Factors," Int. J. Hydro. Energ., 32, 927-931 (2007).
  2. Lee, H. J., Park, N. K., Lee, T. J., Han, G. B., and Kang, M. S., "Effect of Particle Size and Structure of $TiO_2$ Semiconductor on Photoelectronic Efficiency of Dye-sensitized Solar Cell," Clean Technol., 19, 22-29 (2013). https://doi.org/10.7464/ksct.2013.19.1.022
  3. Regan, B. O., and Gratzel, M., "a Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal $TiO_2$ Films," Nature, 353, 737-740 (1991). https://doi.org/10.1038/353737a0
  4. Gratzel, M., "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells," Inorg. Chem., 44, 6841-6851 (2005). https://doi.org/10.1021/ic0508371
  5. Gratzel, M., "Recent advances in Sensitized Mesoscopic Solar Cells," Acc. Chem. Res., 42, 1788-1798 (2009). https://doi.org/10.1021/ar900141y
  6. Frank, S. N., and Bard, A. J., "Semiconductor Electrodes. II. Electrochemistry at n-Type $TiO_2$ Electrodes in acetonitrile Solutions," J. Am. Chem. Soc., 97, 7427-7433 (1975). https://doi.org/10.1021/ja00859a007
  7. Santz, P. A., and Kamat, P. V., "Interparticle Electron Transfer between Size-quantized CdS and $TiO_2$ Semiconductor Nanoclusters," Phys. Chem. Chem. Phys., 4, 198-203 (2002). https://doi.org/10.1039/b107544f
  8. Giraudeau, A., Fan, F. F., and Bard, A. J., "Semiconductor Electrodes. 30. Spectral Sensitization of the Semiconductors n-$TiO_2$and n-$WO_3$ with Metal Phthalocyanines," J. Am. Chem. Soc., 102, 5142-5148 (1980). https://doi.org/10.1021/ja00536a002
  9. Mo, S. D., and Ching, W. Y., "Electronic and Optical Properties of Three Phases of Titanium Dioxide: Rutile, anatase, and Brookite," Phys. Rev., B51, 13023-13032 (1995).
  10. Reintjes, J., and Schultz, M. B., "Photoelastic Constants of Selected Ultrasonic Delay-Line Crystals," J. Appl. Phys., 39, 5254-5258 (1968). https://doi.org/10.1063/1.1655948
  11. Chen, D., Huang, F., Cheng, Y. B., and Caruso, R. A., "Mesoporous anatase $TiO_2$ Beads with High Surface areas and Controllable Pore Sizes: a Superior Candidate for High-Performance Dye-Sensitized Solar Cells," Adv. Mater., 21, 2206-2210 (2009). https://doi.org/10.1002/adma.200802603
  12. Barbe, C. J., arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., and Gratzel, M., "Nanocrystalline Titanium Oxide Electrodes for Photovoltaic applications," J. Am. Ceram. Soc., 80, 3157-3171 (1997).
  13. Chou, T. P., Zhang, Q. F., Russo, B., Fryxell, G. E., and Cao, G. Z., "Titania Particle Size Effect on the Overall Performance of Dye-Sensitized Solar Cells," J. Phys. Chem. C, 111, 6296-6302 (2007). https://doi.org/10.1021/jp068939f
  14. Cahen, D., Hodes, G., Gratzel, M., Guillemoles, J. F., and Riess, I., "Nature of Photovoltaic action in Dye-Sensitized Solar Cells," J. Phys. Chem. B, 104, 2053-2059 (2000). https://doi.org/10.1021/jp993187t
  15. Miao, L., Jin, P., Kaneko, K., Terai, A., Nabatova-Gabain, N., and Tanemura, S., "Preparation and Characterization of Polycrystalline anatase and Rutile $TiO_2$ Thin fims by rf Magnetron Sputtering," App. Surf. Sci., 212, 255-263 (2003).
  16. Zhang, Q., Gao, L., and Guo, J., "Effects of Calcination on the Photocatalytic Properties of Nanosized $TiO_2$ Powders Prepared by $TiCl_4$ Hydrolysis," Appl. Catal. B-Environ., 26, 207-215 (2000). https://doi.org/10.1016/S0926-3373(00)00122-3
  17. Ovenstone, J., and Yanagisawa, K., "Effect of Hydrothermal Treatment of amorphous Titania on the Phase Change from anatase to Rutile during Calcination," Chem. Mater., 11, 2770-2774 (1999). https://doi.org/10.1021/cm990172z
  18. Benkol, G., Kallioinen, J., Myllyperkio1, P., Trif, F., Tommola, J. E. I. K., Yartsev, A. P., and Sundstrom, V., "Interligand Electron Transfer Determines Triplet Excited State Electron Injection in $RuN_3$-Sensitized $TiO_2$ Films," J. Phys. Chem. B, 108, 2862-2867 (2004). https://doi.org/10.1021/jp036778z
  19. Yu, H., Zhang, S., Zhao, H., Xue, B., Liu, P., and Will, G., "High-Performance $TiO_2$ Photoanode with an Efficient Electron Transport Network for Dye-Sensitized Solar Cells," J. Phys. Chem. C, 113, 16277-16282 (2009). https://doi.org/10.1021/jp9041974
  20. Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T., and Durrant, J. R., "Slow Charge Recombination in Dye-sensitised Solar Cells (DSSC) Using $Al_2O_3$ Coated Nanoporous $TiO_2$ Films," Chem. Comm., 1464-1465 (2002).
  21. Jennings, J. R., Ghicov, A., Peter, L. M., Schmuki, P., and Walker, A. B., "Dye-Sensitized Solar Cells Based on Oriented $TiO_2$ Nanotube Arrays: Transport, Trapping, and Transfer of Electrons," J. Am. Chem. Soc., 130, 13364-13372 (2008). https://doi.org/10.1021/ja804852z
  22. Liu, Z., Subramania, V. R., and Misra, M., "Vertically Oriented $TiO_2$ Nanotube Arrays Grown on Ti Meshes for Flexible Dye-Sensitized Solar Cells," J. Phys. Chem. C, 113, 14028-14033 (2009). https://doi.org/10.1021/jp903342s
  23. Feng, X., Shankar, K., Paulose, M., and Grimes, C. A., "Tantalum-Doped Titanium Dioxide Nanowire Arrays for Dye-Sensitized Solar Cells with High Open-Circuit Voltage," Angew. Chem., 121, 8239-8242 (2009). https://doi.org/10.1002/ange.200903114
  24. Albu, S. P., Kim, D., and Schmuki, P., "Growth of Aligned $TiO_2$ Bamboo-Type Nanotubes and Highly Ordered Nanolace," Angew Chem., 120, 1942-1945 (2008). https://doi.org/10.1002/ange.200704144
  25. Kuang, D., Brillet, J., Chen, P., Takata, M., Uchida, S., Miura, H., Sumioka, K., Zakeeruddin, S. M., and Gratzel, M., "Application of Highly Ordered $TiO_2$ Nanotube Arrays in Flexible Dye-Sensitized Solar Cells," ACS Nano., 2, 1113-1116 (2008). https://doi.org/10.1021/nn800174y
  26. Tan, B., and Wu, Y., "Dye-Sensitized Solar Cells Based on Anatase $TiO_2$ Nanoparticle/Nanowire Composites," J. Phys. Chem. B, 110, 15932-15938 (2006). https://doi.org/10.1021/jp063972n
  27. Lei, B. X., Liao, J. Y., Zhang, R., Wang, J., Su, C. Y., and Kuang, D. B., "Ordered Crystalline $TiO_2$ Nanotube Arrays on Transparent FTO Glass for Efficient Dye-Sensitized Solar Cells," J. Phys. Chem. C, 114, 15228-15233 (2010). https://doi.org/10.1021/jp105780v
  28. Pommer, E. E., Liu, B., and Aydil, E. S., "Electron Transport and Recombination in Dye-sensitized Solar Cells Made from Single-crystal Rutile $TiO_2$ Nanowires," Phys. Chem. Chem. Phys., 11, 9648-9652 (2009). https://doi.org/10.1039/b915345d
  29. Feng, X., Zhu, K., Frank, A. J., Grimes, C. A., and Mallouk, T. E., "Rapid Charge Transport in Dye-Sensitized Solar Cells Made from Vertically Aligned Single-Crystal Rutile $TiO_2$ Nanowires," Angew. Chem., 124, 2781-2784 (2012). https://doi.org/10.1002/ange.201108076
  30. Huang, Q., Zhou, G., Fang, L., Hua, L., and Wang, Z. S., "$TiO_2$ Nanorod Arrays Grown from a Mixed acid Medium for Efficient Dye-sensitized Solar Cells," Energy Environ. Sci., 4, 2145-2151 (2011). https://doi.org/10.1039/c1ee01166a
  31. Lv, M., Zheng, D., Ye, M., Sun, L., Xiao, J., Guo, W., and Lin, C., "Densely Aligned Rutile $TiO_2$ Nanorod Arrays with High Surface Area for Efficient Dye-sensitized Solar Cells," Nanoscale, 4, 5872-5879 (2012). https://doi.org/10.1039/c2nr31431b
  32. Howard, C. J., Sabine, Z. M., and Dickson, F., "Structural and Thermal Parameters for Rutile and Anatase," Acta Cryst. B, 47, 462-468 (1991). https://doi.org/10.1107/S010876819100335X
  33. Sedach, P. A., Gordon, T. J., Sayed, S. Y., Furstenhaupt, T., Sui, R., Baumgartner, T., and Berlinguette, C. P., "Solution Growth of Anatase $TiO_2$ Nanowires from Transparent Conducting Glass Substrates," J. Mater. Chem., 20, 5063-5069 (2010). https://doi.org/10.1039/c0jm00266f
  34. Wang, X., Liu, Y., Zhou, X., Li, B., Wang, H., Zhao, W., Huang, H., Liang, C., Yu, X., Liua, Z., and Wang, H. S., "Synthesis of Long $TiO_2$ Nanowire Arrays with High Surface Areas via Synergistic Assembly Route for Highly Efficient Dye-sensitized Solar Cells," J. Mater. Chem., 22, 17531-17538 (2012). https://doi.org/10.1039/c2jm32883f
  35. Liu, B., and Aydil, E. S., "Growth of Oriented Single-Crystalline Rutile $TiO_2$ Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells," J. Am. Chem. Soc., 131, 3985-3990 (2009). https://doi.org/10.1021/ja8078972
  36. Wang, H., Bai, Y., Wu, Q., Zhou, W., Zhang, H., Li, J., and Guo, L., "Rutile $TiO_2$ Nano-branched arrays on FTO for Dye-sensitized Solar Cells," Phys. Chem. Chem. Phys., 13, 7008-7013 (2011). https://doi.org/10.1039/c1cp20351g
  37. Feng, X., Shankar, K., Paulose, M., and Grimes, C. A., "Tantalum-Doped Titanium Dioxide Nanowire arrays for Dye-Sensitized Solar Cells with High Open-Circuit Voltage," Angew. Chem. Int. Ed. Engl., 48, 8095-8098 (2009). https://doi.org/10.1002/anie.200903114
  38. Wu, W. Q., Lei, B. X., Rao, H. S., Xu, Y. F., Wang, Y. F., Su, C. Y., and Kuang, D. B., "Hydrothermal Fabrication of Hierarchically Anatase $TiO_2$ Nanowire Arrays on FTO Glass for Dye-sensitized Solar Cells," Sci Rep., 3, 1352 (2013). https://doi.org/10.1038/srep01352
  39. Liao, J. Y., Lei, B. X., Wang, Y. F., Liu, J. M., Su, C. Y., and Kuang, D. B., "Hydrothermal Fabrication of Quasi-One-Dimensional Single-Crystalline Anatase $TiO_2$ Nanostructures on FTO Glass and Their Applications in Dye-Sensitized Solar Cells," Chem. Eur. J., 17, 1352-1357 (2011). https://doi.org/10.1002/chem.201002244
  40. Charoensirithavorn, P., Ogomi, Y., Sagawa, T., Hayase, S., and Yoshikawa, S., "Improvement of Dye-Sensitized Solar Cell Through $TiCl_4$-Treated $TiO_2$ Nanotube arrays," J. Electrochem. Soc., 157, B354-B356 (2010). https://doi.org/10.1149/1.3280229
  41. Teatum, E. T., Gschneidner, K. A., and Waber, J. T., "Compilation of Calculated Date Useful in Predicting Metallurgical Behavior of the Elements in Binary alloy System," Nat. Technol. Inf. Ser., 206, (1968).
  42. Ungar, T., "Microstructural Parameters from X-ray Diffraction Peak Broadening," Scr. Mater., 51, 777-781 (2004). https://doi.org/10.1016/j.scriptamat.2004.05.007
  43. Zhang, F., Chan, S. W., Spanier, J. E., Apak, E., Jin, Q., Robinson, R. D., and Herman, I. P., "Cerium Oxide Nanoparticles: Size-selective Formation and Structure Analysis," Appl. Phys. Lett., 80, 127-129 (2002). https://doi.org/10.1063/1.1430502
  44. Li, W., Ni, C., Lin, H., Huang, C. P., and Shah, S. I., "Size Dependence of Thermal Stability of $TiO_2$ Nanoparticles," J. Appl. Phys., 96, 6663-6668 (2004). https://doi.org/10.1063/1.1807520
  45. Cho, T. Y., Han, C. W., Jun, Y. S., and Yoon, S. G., "Formation of Artificial Pores in Nano-$TiO_2$ Photo-electrode Films Using Acetylene-black for High-efficiency, Dye-sensitized Solar Cells," Sci. Rep., 3, 1496 (2013). https://doi.org/10.1038/srep01496
  46. Kim, S. Y., and van Duin, A. C. T., "Simulation of Titanium Metal/Titanium Dioxide Etching with Chlorine and Hydrogen Chloride Gases Using the ReaxFF Reactive Force Field," J. Phys. Chem. A, 117, 5655-5663 (2013). https://doi.org/10.1021/jp4031943
  47. Guo, W., Xu, C., Wang, X., Wang, S., Pan, C., Lin, C., and Wang, Z. L., "Rectangular Bunched Rutile $TiO_2$ Nanorod Arrays Grown on Carbon Fiber for Dye-Sensitized Solar Cells," J. am. Chem. Soc., 134, 4437-4441 (2012). https://doi.org/10.1021/ja2120585

Cited by

  1. Role of point defects in hybrid phase TiO2 for resistive random-access memory (RRAM) vol.6, pp.7, 2014, https://doi.org/10.1088/2053-1591/ab17b5
  2. Electrochemical Performance of Titania 3D Nanonetwork Electrodes Induced by Pulse Ionization at Varied Pulse Repetitions vol.11, pp.5, 2014, https://doi.org/10.3390/nano11051062