DOI QR코드

DOI QR Code

Catalytic Reduction of Oxidized Mercury to Elemental Form by Transition Metals for Hg CEMS

수은 연속측정시스템에서 전이금속에 의한 산화수은의 원소수은으로의 촉매환원

  • Ham, Sung-Won (Department of Chemical Engineering, Kyungil University)
  • 함성원 (경일대학교 화학공학과)
  • Received : 2014.08.20
  • Accepted : 2014.08.21
  • Published : 2014.09.30

Abstract

This study was aimed to develop catalytic system for the dry-based reduction of oxidized mercury ($Hg^{2+}$) to elemental mercury ($Hg^0$) which is one of the most important components comprising mercury continuous emission monitoring system (Hg-CEMS). Based on the standard potential in oxidation-reduction reaction, transition metals including Fe, Cu, Ni and Co were selected as possible candidates for catalyst proceeding spontaneous reduction of $Hg^{2+}$ into $Hg^0$. These transition metal catalysts revealed high activity for reduction of $Hg^{2+}$ into $Hg^0$ in the absence of oxygen in reactant gases. However, their activities were greatly decreased in the presence of oxygen, which was attributed to the transformation of transition metals by oxygen to the corresponding transition metal oxides with less catalytic activity for the reduction of oxidized mercury. Hydrogen supplied to the reactant gases significantly enhanced $Hg^{2+}$ reduction activity even in the presence of oxygen. It might be due to occurrence of combustion reaction between $H_2$ and $O_2$ causing the consumption of $O_2$ at such high reaction temperature at which oxidized mercury reduction reaction took place. Because the system showed high activity for $Hg^{2+}$ reduction to $Hg^0$, which was compatible to that of wet-chemistry technology using $SnCl_2$ solution, the catalytic reduction system of Fe catalyst with the supply of $H_2$ could be employed as a commercial system for the reduction of oxidized mercury to elemental mercury.

본 연구는 수은연속측정시스템의 가장 중요한 구성 요소의 하나인 산화수은을 원소수은으로 환원시킬 수 있는 건식 환원촉매시스템 개발을 목적으로 수행되었다. 산화-환원 표준전위를 기준으로 산화수은의 원소수은으로의 환원반응을 자발적으로 일으킬 수 있는 촉매 대상물질로 Fe, Cu, Ni 및 Co 4종류의 전이금속이 선택되었다. 이들 전이금속 촉매들은 산소가 없는 반응가스 조성에서 산화수은의 원소수은으로의 환원반응에 대해 높은 활성을 보였다. 그러나 산소가 존재하는 경우 환원 활성이 크게 감소하는데 이는 산소에 의해 해당 전이금속이 산화수은 환원 활성이 낮은 전이금속산화물로 변환되기 때문이다. 반응가스에 산소가 존재하여도 수소를 공급하면 산화수은 환원 활성이 크게 증가되는데 이는 산화수은의 환원반응이 진행되는 고온에서 산소와 수소 사이의 연소반응에 의해 산소가 소모되기 때문으로 확인되었다. Fe를 환원촉매로 하고 배기가스에 수소를 공급하는 산화수은 환원촉매시스템은 $SnCl_2$ 수용액을 사용하는 습식화학 환원기술에 필적할 수준의 활성을 나타내기 때문에 상업적으로 적용 가능한 산화수은 환원시스템으로 기대된다.

Keywords

References

  1. Lindberg, S. E., and Stratton, W. J., "Atmospheric Mercury Speciation: Concentrations and Behavior of Reactive Gaseous Mercury in Ambient Air," Environ. Sci. Technol., 32, 49-57 (1998). https://doi.org/10.1021/es970546u
  2. Travis, C. C., and Blaylock, B. P., "Municipal Waste Combustor Emissions: Human Exposure to Mercury and Dioxin," Toxicol. Environ. Chem., 49, 203-216 (1995). https://doi.org/10.1080/02772249509358194
  3. Schroeder, W. H., and Munthe, J., "Atmospheric Mercury-An Overview," Atmos. Environ., 32, 809-822 (1998). https://doi.org/10.1016/S1352-2310(97)00293-8
  4. U. S. Government Printing Office, "Mercury Study Report to Congress," Washington, DC (1997).
  5. U. S. Government Printing Office, "A Study of Hazardous Air Pollutant from Electric Utility Steam Generating Units: Final Report to Congress," Washington, DC (1998).
  6. Kim, M. H., Ham, S. W., and Lee, J. B., "Oxidation of Gaseous Elemental Mercury by Hydrochloric Acid over $CuCl_2/TiO_2$-based Catalysts in SCR Process," Appl. Catal. B: Environ., 99, 272-278 (2010). https://doi.org/10.1016/j.apcatb.2010.06.032
  7. Hong, H. J., Ham, S. W., Kim, M. H., Lee, S. M., and Lee, J. B., "Characteristics of Commercial Selective Catalytic Reduction Catalyst for the Oxidation of Gaseous Elemental Mercury with respect to Reaction Conditions," Korean J. Chem. Eng., 27(4), 1117-1122 (2010). https://doi.org/10.1007/s11814-010-0175-x
  8. Lee, S. S., Kim, K. Y., Oh, K. J., Jeon, J. M., and Kang, D. C., "Reaction Characteristics of Elemental and Oxidized Mercury with Fly Ash Components," Clean Technol., 19(4), 453-458 (2013). https://doi.org/10.7464/ksct.2013.19.4.453
  9. Hong, H. J., and Ham, S. W., "Activity of $V_2O_5-WO_3/TiO_2$-based SCR Catalyst for the Oxidation of Gas-phase Elemental Mercury," Clean Technol., 17(4), 370-378 (2011).
  10. Zhenghe, Y. L., and Kuznicki, S. M., "Development of a Novel Mercury Cartridge for Mercury Analysis," Energy Fuels, 24, 10-17 (2010). https://doi.org/10.1021/ef900501p
  11. Byun, Y., Shin, D. N., Ham, S. W., and Lee, K., "Calibration of Mercury Analysers: Assessment of Agreement between Four Methods," Anal. Methods, 4, 3841-3848 (2012). https://doi.org/10.1039/c2ay25533b
  12. Pavlish, J. H., Sondreal, E. A., Mann, M. D., Olson, E. S., Galbreath, K. C., Laudal. D. L., and Benson, S. A., "Status Review of Mercury Control Options for Coal-fired Power Plants," Fuel Process. Technol., 82, 89-165 (2003). https://doi.org/10.1016/S0378-3820(03)00059-6
  13. Geng, W., Nakajima, T., Takanashi, H., and Ohki, A., J., "Determination of Mercury in Ash and Soil Samples by Oxygen Flask Combustion Method-Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)," J. Hazard. Mater., 154, 325-330 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.029
  14. Hatch, W. R., and Ott, W. L., "Determination of Submicrogram Quantities of Mercury by Atomic Absorption Spectrophotometry," Anal. Chem., 40, 2085-2087 (1968). https://doi.org/10.1021/ac50158a025
  15. Liang, L, Horvat, M., and Bloom, N. S., "An Improved Speciation Method for Mercury by GC/CVAFS after Aqueous Phase Ethylation and Room Temperature Precollection," Talanta, 41, 371-379 (1994). https://doi.org/10.1016/0039-9140(94)80141-X
  16. Zamzow, D. S., Bajic, S. J., Eckels, D. E., Baldwin, D. P., Winterrrowd, C., and Keeney, R., "Real-time Atomic Absorption Mercury Continuous Emission Monitor," Rev. Sci. Instrum., 74, 3774-3783 (2003). https://doi.org/10.1063/1.1589158
  17. Laudal, D. L., Thompson, J. S., Pavlish, J. H., Brickett, L. A., and Chu, P., "Use of Continuous Mercury Monitors at Coal-fired Utilities," Fuel Process. Technol., 85, 501-511 (2004). https://doi.org/10.1016/j.fuproc.2003.11.005
  18. Brown, T. L., LeMay, H. E., and Bursten, B. E., Chemistry The Central Science, 10th ed., Prentice Hall, NJ, 2006, p. 1128.