DOI QR코드

DOI QR Code

Theoretical and Computation Analysis on the Pressure Drop in the Cyclone Dust Collector

사이클론 집진장치 내부의 압력강하에 대한 전산해석과 이론식의 결과 비교

  • Hyun, Daegeun (Department of Environmental Engineering, Yeungnam University) ;
  • Chang, Hyuksang (Department of Environmental Engineering, Yeungnam University)
  • Received : 2014.07.10
  • Accepted : 2014.08.19
  • Published : 2014.09.30

Abstract

Using the CFD method, the pressure drop in 6 cyclone dust collectors of different shape were calculated. And the results were compared with results of the conventional theories. Equations of Shepherd and Lapple (1939, 1940), First (1950), Alexander (1949), Stairmand (1949), Barth (1956) were used in the theoretical calculation. In CFD calculations, we used standard k-epsilon model for analysis of turbulent flow, fluid is $25^{\circ}C$ air, the velocity at inlet is 10 m/s and the temperature is $25^{\circ}C$. In CFD analysis results, the pressure distributions along the flow showed similar patterns in different cyclone shapes. But the pressure drop distributions estimated on the conventional theories had big difference in different cyclone shapes. Only First's theory and CFD analysis showed similar results.

본 연구에서는 집진성능이 다른 6개의 서로 다른 형상의 사이클론 집진장치 내에서 이루어지는 압력강하에 대해 기존이론식과 CFD (computational fluid dynamics) 해석 결과를 비교하였다. 이론 계산에는 Shepherd와 Lapple (1939, 1940), First (1950), Alexander (1949), Stairmand (1949) 그리고 Barth (1956)의 식이 사용되었다. CFD 연구에서 난류 유동을 해석하기 위해 standard k-epsilon 모델을 사용하였고, 유체는 $25^{\circ}C$ 공기, 입구에서 유속은 10 m/s, 온도는 $25^{\circ}C$로 설정하였다. CFD 해석 결과 사이클론의 형상과 관계없이 압력분포는 일정한 형태를 나타내었다. 하지만 이론식에 의한 추정의 경우 형상에 따른 압력강하는 큰 차이를 보였으며, 오직 First (1950)의 식이 CFD 결과와 아주 유사한 결과를 나타내었다.

Keywords

References

  1. Leith, D., and Mehta, D., "Cyclone Performance and Design," Atmos. Environ., 7(5), 527-549 (1973). https://doi.org/10.1016/0004-6981(73)90006-1
  2. Gimbun, J., Chuah, T. G., Fakhru'l-Razi, A., and Choong, T. S. Y., "The Influence of Temperature and Inlet Velocity on Cyclone Pressure Drop : a CFD Study," Chem. Eng. Proc.: Process Intensificat., 44(1), 7-12 (2005). https://doi.org/10.1016/j.cep.2004.03.005
  3. Wark, K., Warner, C. F., and David, W. T., Air Pollution : Its Origin and Control 3rd Edition, Addison-Wesley inc., 1998.
  4. Bohnet, M., "Influence of the Gas Temperature on the Separation Efficiency of Aerocyclones," Chem. Eng. Proc.: Process Intensificat., 34(3), 151-156 (1995). https://doi.org/10.1016/0255-2701(94)04001-X
  5. Narasimha, M., Brennan, M. S., Holtham, P. N., and Napier-Munn, T. J., "A Comprehensive CFD Model of Dense Medium Cyclone Performance," Minerals Eng., 20(4), 414-426 (2007). https://doi.org/10.1016/j.mineng.2006.10.004
  6. Chuah, T. G., Gimbun, J., and Choong, T. S. Y., "A CFD Study of the Effect of Cone Dimensions on Sampling Aerocyclones Performance and Hydrodynamics," Powder Technol., 162(2), 126-132 (2006). https://doi.org/10.1016/j.powtec.2005.12.010
  7. Shin, D. W., Kim, H. K., Kim, T. H., Park, J. S., and Jeon, D. H., "Numerical Analysis for the Effect of Spacer in Reverse Electrodialysis," Clean Technol., 19(1), 1-7 (2013) https://doi.org/10.7464/ksct.2013.19.1.001
  8. Seo, M. H., and Chang, H., "Computational Study on Design of the AIG for the Enhancement of Ammonia Injection in the SCR System," Clean Technol., 18(4), 410-418 (2012) https://doi.org/10.7464/ksct.2012.18.4.410
  9. ANSYS, ANSYS CFX-Solver Theory Guide, ANSYS inc., 2011.

Cited by

  1. Flow visualization of PM preprocessing system using the small scale gascyclone precipitator vol.52, pp.3, 2016, https://doi.org/10.3796/KSFT.2016.52.3.263