DOI QR코드

DOI QR Code

Benzene Oxidation Characteristics of Cu/γ - Al2O3 Catalyst

Cu/γ - Al2O3 촉매를 적용한 벤젠산화반응특성

  • 최욱 (한국에너지기술연구원) ;
  • 경대현 (한국에너지기술연구원) ;
  • 박영성 (대전대학교 공과대학 환경공학과)
  • Received : 2014.01.15
  • Accepted : 2014.08.05
  • Published : 2014.09.30

Abstract

Catalytic oxidation characteristics of benzene as a VOC was investigated in a fixed bed flow reactor using $Cu/{\gamma}-Al_2O_3$ catalyst. The parametric tests were conducted at the reaction temperature range of $200{\sim}500^{\circ}C$, benzene concentration of 400~650 ppm, gas flow rate of 50~100 cc/min, and space velocity range of $7,500{\sim}22,500hr^{-1}$. The property analyses by using the BET, SEM, TGA and the conversion of catalytic oxidation of benzene were examined. The experimental results showed that the conversion was increased with decreasing benzene concentration, gas flow rate and space velocity. Benzene oxidation reaction over $Cu/{\gamma}-Al_2O_3$ catalyst could be expressed as the first order homogeneous reaction of which the activation energy was 17.2 kcal/mol and frequency factor was $1.33{\times}10^6sec^{-1}$.

본 연구에서는 ${\gamma}-Al_2O_3$에 구리를 함침시킨 촉매를 고정층 반응기에 충전시킨 후 휘발성유기물질(VOCs)인 벤젠의 촉매산화 반응특성을 살펴보았다. 실험조건은 반응온도 $200{\sim}500^{\circ}C$, 벤젠의 농도 400~650 ppm, 가스유입량 50~100 cc/min, 공간속도 $7,500{\sim}22,500hr^{-1}$의 범위로 적용하였다. BET분석, 주사전자현미경(SEM), 열천칭(TGA) 분석을 통해 제조된 촉매의 물성을 조사하였으며, 벤젠의 촉매산화반응의 전환율에 대하여 고찰하였다. 실험결과, 벤젠의 농도와 공간속도가 낮아질수록 벤젠 산화반응의 전환율은 증가함을 알 수 있었다. 벤젠의 촉매산화반응은 1차 균일반응으로 해석될 수 있었으며, 반응의 활성화 에너지(Ea)는 17.2 kcal/mol, 빈도인자(A)는 $1.33{\times}10^6sec^{-1}$이었다.

Keywords

References

  1. Wark, K., and Warner, C. F., Air Pollution Its Origin and Control, Harper and Row, Publishers, 1981, pp. 1-2.
  2. Cooper, C. D., and Alley, F. C., Air Pollution Control A Design Approach, Waveland Press, Inc., 19994, pp. 351-352, pp. 359-364.
  3. Ruddy, E. N., and Carroll, L. A., "Select the Best VOC Control Strategy," Chem. Eng. Prog., 89(7), 28-35 (1993).
  4. Seinfeld, J. H., Atmosphere Chemistry and Physics of Air Pollution, John Wiley & Sons, New York, 1986, pp. 1-3.
  5. Darvert, J. G., The Chemistry of the Atmosphere-Its Impact on Global Change, Blackwell Scientific Pub., London, 1994, pp. 3.
  6. Moretti, E. C., and Mukhopadhyay, N., "VOC Control : Current Practices and Future Trends," Chem. Eng. Prog., 89(7), 20-26 (1993).
  7. Palazzolo, M. A., "Control of Industrial VOC Emissions by Catalytic Incineration," EPA 600-S2-84-118, Research Triangle Park, NC, U. S. Environmental Protection Agency, 1985.
  8. Jeon, H. J., Catalysis an Introduction, Hanlimwon, 3rd ed., 1995, pp. 254-267.
  9. Hong, S. S., Lee, G. H., and Lee, G. D., "Catalytic Combustion of Benzene over Metal Oxide Catalyst," Korean J. Chem. Eng., 20(3), 440-444 (2003). https://doi.org/10.1007/BF02705544
  10. Lim, S. D., Chang, K. H., and Nam, I. S., "Deactivation of Chromium Catalyst for the Decomposition of Perchloroethylene (PCE)," Hwahak Konghak, 39(3), 265-271 (2001).
  11. Kim, H. J., Choi, S. W., and Lee, C. S., "Activity and Characteristics of Cu-Mn Oxide Catalysts Supported on ${\gamma}-Al_2O_3$," Korean Chem. Eng. Res., 44(2), 193-199 (2006).
  12. Kim, Y. J., Hwang, M. E., Koo, K. K., Kim, Y. R., Park, J. S., and Yoon, W. R., "Preperation of Ru-Sn/${\gamma}-Al_2O_3$ Catalyst and Evaluation of Its Reactivity for the Removal of $C_1$-HVOCs". Korean Chem. Eng. Res., 42(1), 38-43 (2004).
  13. Song, K. S., Seo, Y. S., Jung, N. J., Yu, S. P., Yu, I. S., Lee, S. N., Choi, J. J., and Jung, J. D., "Incineration Characteristics of Volatile Organic Compound in the Regenerative Catalytic Oxidizer," Hwahak Konghak, 41(3), 397-402 (2003).
  14. Everaert, K., and Baeyens, J., "Catalytic Combustion of Volatile Organic Compounds," J. Hazard. Mater., B 109, 113-139 (2004). https://doi.org/10.1016/j.jhazmat.2004.03.019
  15. Everaert, K.,"The Presentive Reduction and 'end-of-pipe' Removal of VOC and PCDD/F from Flue Gas," Ph.D. Dissertation, Univ. of Leuven, Belgium, 2003.
  16. Vannice, M. A., "The Catalyst Synthesis of Hydrocarbons from Mixtures over the Group VIII Metals : The Specific Activities and Product Distributions of Supported Metals," J. Catal., 37(3), 449-461 (1975). https://doi.org/10.1016/0021-9517(75)90181-5
  17. Palmer, H. B., and Vannice, M. A., "The Effect of Preparation Variables on the Dispersion of Supported Platinum Catalysts," J. Chem. Technol. Biotech., 30(1), 205-216 (1980).
  18. Yoon, J. M., "Catalytic Oxidation Removal of Aromatic Hydrocarbon," Master Thesis, Pohang Univ., 1997.
  19. Larsson, P. O., Andersson, A., Wallenberg, L. R., and Svensson, B., "Combustion of CO and Toluene : Characterization of Copper Oxide Supported on Titania and Activity Comparisons with Supported Cobalt Iron, and Manganese Oxide," J. Catal., 163(2), 279-293 (1996). https://doi.org/10.1006/jcat.1996.0329
  20. Friedman, R. M., Freeman, J. J., and Lytle, F. W., "Characterization of Cu/$Al_2O_3$ Catalyst," J. Catal., 55(1), 10-28 (1978). https://doi.org/10.1016/0021-9517(78)90181-1
  21. Lippens, B. C., and Steggerda, J. J., "Physical and Chemical Aspects of Adsorbents and Catalysts," B. G. Linsen, Academic Press, N. Y., 1970, pp. 171.
  22. Kim, B. S., and Park, Y. S., "VOCs Oxidation Characteristics of Transition Metals/${\gamma}-Al_2O_3$ Catalyst," Korean Soc. Environ. Eng., 29(4), 444-451 (2007).
  23. Levenspiel, O., "Chemical Reaction Engineering," John Wiley & Sons, New York, 1972, pp. 108-110.