DOI QR코드

DOI QR Code

미계측 유역의 수문학적 가뭄 평가 및 감시를 위한 원격탐사의 활용

Hydrological Drought Assessment and Monitoring Based on Remote Sensing for Ungauged Areas

  • 이진영 (APEC 기후센터 연구본부 기후변화연구팀) ;
  • 임정호 (울산과학기술대학교(UNIST) 도시환경공학부) ;
  • 김종필 (APEC 기후센터 연구본부 기후변화연구팀)
  • Rhee, Jinyoung (APEC Climate Center, Climate Research Department, Climate Change Research Team) ;
  • Im, Jungho (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Jongpil (APEC Climate Center, Climate Research Department, Climate Change Research Team)
  • 투고 : 2014.07.09
  • 심사 : 2014.08.25
  • 발행 : 2014.08.31

초록

본 연구에서는 주요 수문 변수인 유출량, 저수위, 유량 등의 관측 자료가 부재한 미계측 유역에 대한 수문학적 가뭄 평가 및 감시를 위해 원격 탐사 자료를 활용하는 방법론을 최근 심각한 가뭄 피해를 입은 지역인 남한강상류 유역에 적용하였다. 수문 변수의 관측 자료가 부재한 지역에 대해서는 원격 탐사를 이용하여 수문 변수보다 추정이 용이한 강수량, 증발산량 등 기상 변수의 추정을 통해 물 수지에 기초하여 가뭄상태에 대한 정보를 얻을 수 있다. 본 연구에서는 2002-2013년의 기간에 대하여 원격 탐사 자료를 이용하여 대기의 온도를 추정하고, 이로부터 증발산량을 도출하여 강수량과 증발산량 차의 백분위가 유량 백분위와 가지는 상관성을 분석하였다. Aqua위성에 탑재된 MODIS 센서의 $1{\times}1km$ 공간 해상도의 지표면 온도와 $5{\times}5km$ 공간해상도의 대기 연직 온도 자료를 이용하여 월별 최고 및 최저 대기 온도를 추정하였으며, Hargreaves 방법을 이용하여 증발산량을 추정하였다. 미국몬태나주립대학교에서 Penman-Monteith 방법을 이용하여 추정한 기존 자료(MOD16)의 잠재 증발산량과 비교한 결과 상대적으로 결정계수는 더 작았으나 상당히 작은 오차를 보였다. 남한강상류 유역에 대하여 TRMM 위성으로부터 도출한 강수량과 함께 1, 3, 6, 12개월 시간 척도의 P-PET(강수량 증발산량) 백분위를 구해 유량 백분위와의 상관관계를 분석하였다. 남한강상류 유역은 여름철(r = 0.89, tau = 0.71)과 가뭄 평가에 중요한 가을철(r = 0.63, tau = 0.47)에 1개월 P-PET 백분위가 유량 백분위와 95% 신뢰도로 통계적으로 유의한 높은 상관관계를 나타냈다. 이 유역은 강수의 영향이 특히 크게 나타나는 지역으로 일반적으로 건조한 지역과는 달리 증발산량이 유량과 양의 상관관계를 보였다. 연구 결과로부터 원격 탐사 자료가 미계측 유역에서 수문학적 가뭄 평가 및 감시에 유용하게 활용될 수 있음을 보였으며 특히 공간적으로 분포된 높은 해상도의 추정 자료는 지역별로 차별화된 가뭄 대책 수립에 기여할 수 있을 것이다.

In this study, a method to assess and monitor hydrological drought using remote sensing was investigated for use in regions with limited observation data, and was applied to the Upper Namhangang basin in South Korea, which was seriously affected by the 2008-2009 drought. Drought information may be obtained more easily from meteorological data based on water balance than hydrological data that are hard to estimate. Air temperature data at 2 m above ground level (AGL) were estimated using remotely sensed data, evapotranspiration was estimated from the air temperature, and the correlations between precipitation minus evapotranspiration (P-PET) and streamflow percentiles were examined. Land Surface Temperature data with $1{\times}1km$ spatial resolution as well as Atmospheric Profile data with $5{\times}5km$ spatial resolution from MODIS sensor on board Aqua satellite were used to estimate monthly maximum and minimum air temperature in South Korea. Evapotranspiration was estimated from the maximum and minimum air temperature using the Hargreaves method and the estimates were compared to existing data of the University of Montana based on Penman-Monteith method showing smaller coefficient of determination values but smaller error values. Precipitation was obtained from TRMM monthly rainfall data, and the correlations of 1-, 3-, 6-, and 12-month P-PET percentiles with streamflow percentiles were analyzed for the Upper Namhan-gang basin in South Korea. The 1-month P-PET percentile during JJA (r = 0.89, tau = 0.71) and SON (r = 0.63, tau = 0.47) in the Upper Namhan-gang basin are highly correlated with the streamflow percentile with 95% confidence level. Since the effect of precipitation in the basin is especially high, the correlation between evapotranspiration percentile and streamflow percentile is positive. These results indicate that remote sensing-based P-PET estimates can be used for the assessment and monitoring of hydrological drought. The high spatial resolution estimates can be used in the decision-making process to minimize the adverse impacts of hydrological drought and to establish differentiated measures coping with drought.

키워드

참고문헌

  1. Allen, R.G., L.S. Pereira, D. Raes, and M. Smith, 1998. Crop evapotranspiration-Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56. Rome, Italy.
  2. Borbas, E.E., S.W. Seemann, A. Kern, L. Moy, J. Li, L. Gumley, and W. P. Menzel, 2011. MODIS Atmospheric Profile retrieval algorithm theoretical basis document, Collection 6, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, WI, USA.
  3. Cancelliere, A., and J.D. Salsas, 2010. Drought probabilities and return period for annual streamflow series, Journal of Hydrology, 391: 77-89. https://doi.org/10.1016/j.jhydrol.2010.07.008
  4. Dezman, L.E., B.A. Shafer, H.D. Simpson, and J.A. Danielson, 1982. Development of a surface water supply index-A drought severity indicator for Colorado, Proc. of International Symposium of Hydrometeorology, Bethesda, MD, American Water Resources Association, pp. 337-397.
  5. Ellis, A.W., G.B. Goodrich, and G.M. Garfin, 2009. A hydroclimatic index for examining patterns of drought in the Colorado River Basin, International Journal of Climatology, 30: 236-255.
  6. Hare, F.K., 1980. Long-term annual surface heat and water balances over Canada and the United States south of $60^{\circ}$N: Reconciliation of precipitation, runoff, and temperature fields, Atmosphere-Ocean, 18: 127-153. https://doi.org/10.1080/07055900.1980.9649083
  7. Hargreaves, G.L., G.H. Hargreaves, and J.P. Riley, 1985. Agricultural benefits for Senegal River basin, Journal of Irrigation and Drainage Engineering, 111: 113-124. https://doi.org/10.1061/(ASCE)0733-9437(1985)111:2(113)
  8. Hayes, M.J., M.D. Svoboda, B.D. Wardlow, M.C. Anderson, and F. Kogan, 2012. Drought monitoring: Historical and current perspectives, In B.D. Wardlow, M.C. Anderson, and J.P. Verdin (Eds), Remote Sensing of Drought: Innovative Monitoring Approaches, CRC Press, pp. 1-19.
  9. Kim, 2012. Evaluation of a distributed hydrologic model with TRMM 3B42 and its application in the Nakdong-River basin, South Korea, APCC Technical Report 2012-02, pp.141-179.
  10. Kingston, D.G., M.D. Todd, R.G. Taylor, J.R. Thompson, and N. W. Arnell, 2009. Uncertainty in the estimation of potential evapotranspiration under climate change, Geophysical Research Letters, 36: L20403, doi:10.1029/2009GL040267.
  11. Mendez Jocik, A.A., 2004. Estimate ambient air temperature at regional level using remote sensing techniques, M. S. thesis, Sustainable Agriculture Specialization, International Institute for Geo-information Science and Earth Observation, Enschede, Netherlands.
  12. Mishra, A.K., and V.P. Singh, 2010: A review of drought concepts, Journal of Hydrology, 391: 202-216. https://doi.org/10.1016/j.jhydrol.2010.07.012
  13. Moon, J.W., C.G. Jung, and D.R. Lee, 2013. Parameter Regionalization of Hargreaves Equation Based on Climatological Characteristics in Korea, J. Korea Water ResroucesAssosication, 46: 933-946. (In Korean with English abstract) https://doi.org/10.3741/JKWRA.2013.46.9.933
  14. Mu, Q., M. Zhao, and S.W. Running, 2013: MODIS global terrestrial evapotranspiration (ET) product (NASA MOD16A2/A3) Algorithm Theoretical Basis Document Collection 5, College of Forestry and Conservation, University of Montana, Missoula, MT. USA.
  15. Rhee, J. and J. Im, 2014. Estimating high spatial resolution air temperature for regions with limited in situ data using MODIS products, Remote Sensing, 6, 7360-7378. doi: 10.3390/rs6087360.
  16. Seneviratne, S.I., T. Corti, E.L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010. Investigating soil moistureclimate interactions in a changing climate: A review, Earth-Science Reviews, 99: 125-161. https://doi.org/10.1016/j.earscirev.2010.02.004
  17. Seney G.B., S. Bohms, and J.P. Verdin, 2012. Remote sensing of evapotranspiration for operational drought monitoring using principles of water and energy balance, In B.D. Wardlow, M.C. Anderson, and J.P. Verdin (Eds), Remote Sensing of Drought: Innovative Monitoring Approaches, CRC Press, pp.123-144.
  18. Shafer, B.A., and L.E. Dezman. 1982. Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas, Proc. of 50th Annual Western Snow Conference, Reno, NV, Western Snow Conference, USA.
  19. Shahid S., and H. Behrawan, 2008. Drought risk assessment in the western part of Bangladesh. Natural Hazards, 46: 391-413. https://doi.org/10.1007/s11069-007-9191-5
  20. Sim G.O., 2009. A study on the extreme drought countermeasures by climate changes, National Disaster Management Institute, Seoul, South Korea. (in Korea with English abstract)
  21. Sonmez, F.K., A.U. Komuscu, A. Erkan, and E. Turgu, 2005. An analysis of spatial and temporal dimension of drought vulnerability in Turkey using the Standardized Precipitation Index, Natural Hazards, 35: 243-264. https://doi.org/10.1007/s11069-004-5704-7
  22. Thornthwaite, C.W., and J.R. Mather, 1957. Instructions and tables for computing potential evapotranspiration and the water balance. Drexel Institute of Technology, Laboratory of Climatology, Philadelphia, PA, USA.
  23. Tsakiris, G., D. Pangalou, and H. Vangelis, 2007. Regional drought assessment based on the Reconnaissance Drought Index (RDI), Water Resources Management, 21: 821-833. https://doi.org/10.1007/s11269-006-9105-4
  24. Vanderlinden, K., J.V. Giraldez, and M.V. Meirvenne, 2004. Spatial estimation of reference evapotranspiration in Andalusia, Spain, Journal of Hydrometeorology, 9: 242-255.
  25. Vicente-Serrano, S.M., S. Begueria, and J.I. Lopez-Moreno, 2010. A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index, Journal of Climate, 23: 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
  26. Wilhite, D.A., and M. Buchanan-Smith, 2005. Drought as hazard: understanding the natural and social context, In D.A. Wilhite (Ed.) Drought and Water Crises: Science, Technology, and Management Issues, CRC Press, pp.3-29. Boca Raton, FL, USA.

피인용 문헌

  1. Variation of stream water quality and baseflow contribution from groundwater during rainfall event in the Haean basin vol.51, pp.6, 2015, https://doi.org/10.14770/jgsk.2015.51.6.611
  2. Impact of Trend Estimates on Predictive Performance in Model Evaluation for Spatial Downscaling of Satellite-based Precipitation Data vol.33, pp.1, 2017, https://doi.org/10.7780/kjrs.2017.33.1.3
  3. 베이지안 네트워크 및 의사결정 모형을 이용한 위성 강수자료 기반 기상학적 가뭄 전망 vol.52, pp.4, 2019, https://doi.org/10.3741/jkwra.2019.52.4.279
  4. Satellite-based Drought Forecasting: Research Trends, Challenges, and Future Directions vol.37, pp.4, 2014, https://doi.org/10.7780/kjrs.2021.37.4.11