DOI QR코드

DOI QR Code

MTA1 Overexpression Induces Cisplatin Resistance Innasopharyngeal Carcinoma by Promoting Cancer Stem Cells Properties

  • Feng, Xiaohua (Department of Otolaryngology, General Hospital of Guangzhou Command) ;
  • Zhang, Qianbing (Cancer Institute of Southern Medical University) ;
  • Xia, Songxin (Department of stomatology, Guangdong Provincial Hospital of Traditional Chinese Medicine) ;
  • Xia, Bing (Department of Cardiology, 458th Hospital of People's Liberation Army) ;
  • Zhang, Yue (Department of Radiotherapy, Nanfang Hospital of Southern Medical University) ;
  • Deng, Xubin (Department of Radiotherapy, Nanfang Hospital of Southern Medical University) ;
  • Su, Wenmei (Cancer Center of Affiliated Hospital of Guangdong Medical College) ;
  • Huang, Jianqing (Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU))
  • 투고 : 2014.02.10
  • 심사 : 2014.08.05
  • 발행 : 2014.09.30

초록

Themetastasis-associated gene 1 (MTA1) oncogene hasbeen suggested to be involved in the regulation of cancer progression. However, there is still no direct evidence that MTA1 regulates cisplatin (CDDP) resistance, as well as cancer stem cell properties. In this study, we found that MTA1 was enriched in CNE1/CDDP cells. Knock down of MTA1 in CNE1/CDDP cells reversed CSCs properties and CDDP resistance. However, ectopic expression of MTA1 in CNE1 cells induced CSCs phenotypes and CDDP insensitivity. Interestingly, ectopic overexpression of MTA1-induced CSCs properties and CDDP resistance were reversed in CNE1 cells after inhibition of PI3K/Akt by LY294002. In addition, MTA1 expression and Akt activity in CNE1/CDDP cells was much higher than that in CNE1 cells. These results suggested that MTA1 may play a critical role in promoting CDDP resistance in NPC cells by regulatingcancer stem cell properties via thePI3K/Akt signaling pathway. Our findings suggested that MTA1 may be a potential target for overcoming CDDP resistance in NPC therapy.

키워드

참고문헌

  1. Barr, M.P., Gray, S.G., Hoffmann, A.C., Hilger, R.A., Thomale, J., O’Flaherty, J.D., Fennell, D.A., Richard, D., O’Leary, J.J., and O’Byrne, K.J. (2013). Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature. PLoS One 8, e54193. https://doi.org/10.1371/journal.pone.0054193
  2. Bui-Nguyen, T.M., Pakala, S.B., Sirigiri, R.D., Xia, W., Hung, M.C., Sarin, S.K., Kumar, V., Slagle, B.L., and Kumar, R. (2010). NFkappaB signaling mediates the induction of MTA1 by hepatitis B virus transactivator protein HBx. Oncogene 29, 1179-1189. https://doi.org/10.1038/onc.2009.404
  3. Donnenberg, V.S., and Donnenberg, A.D. (2005). Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J.Clin.Pharmacol. 45, 872-877. https://doi.org/10.1177/0091270005276905
  4. Godwin, P., Baird, A.M., Heavey, S., Barr, M.P., O'Byrne, K.J., and Gately, K. (2013). Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front.Oncol. 3, 120.
  5. Kumar, R., Wang, R.A., and Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Semi.Oncol. 30, 30-37. https://doi.org/10.1053/sonc.2003.37273
  6. Kumar, R., Balasenthil, S., Pakala, S.B., Rayala, S.K., Sahin, A.A., and Ohshiro, K. (2010). Metastasis-associated protein 1 short form stimulates Wnt1 pathway in mammary epithelial and cancer cells. Cancer Res. 70, 6598-6608. https://doi.org/10.1158/0008-5472.CAN-10-0907
  7. Li, D.Q., Pakala, S.B., Nair, S.S., Eswaran, J., and Kumar, R. (2012a). Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Res. 72, 387-394. https://doi.org/10.1158/0008-5472.CAN-11-2345
  8. Li, Y., Huang, W., Huang, S., Du, J., and Huang, C. (2012b). Screening of anti-cancer agent using zebrafish: comparison with the MTT assay. Biochem.Biophys.Res.Commun. 422, 85-90. https://doi.org/10.1016/j.bbrc.2012.04.110
  9. Liu, A.Y., Cai, Y., Mao, Y., Lin, Y., Zheng, H., Wu, T., Huang, Y., Fang, X., Lin, S., Feng, Q., et al. (2014). Twist2 promotes self-renewal of liver cancer stem-like cells by regulating CD24. Carcinogenesis 35, 537-545. https://doi.org/10.1093/carcin/bgt364
  10. Ma, B.B., Lui, V.W., Hui, E.P., Lau, C.P., Ho, K., Ng, M.H., Cheng, S.H., Tsao, S.W., and Chan, A.T. (2010). The activity of mTOR inhibitor RAD001 (everolimus) in nasopharyngeal carcinoma and cisplatin-resistant cell lines. Invest. New Drugs 28, 413-420. https://doi.org/10.1007/s10637-009-9269-x
  11. Ma, L., Zhang, G., Miao, X.B., Deng, X.B., Wu, Y., Liu, Y., Jin, Z.R., Li, X.Q., Liu, Q.Z., Sun, D.X., et al. (2013). Cancer stem-like cell properties are regulated by EGFR/AKT/beta-catenin signaling and preferentially inhibited by gefitinib in nasopharyngeal carcinoma. FEBS J. 280, 2027-2041. https://doi.org/10.1111/febs.12226
  12. Morais, C., Gobe, G., Johnson, D.W., and Healy, H. (2010). Inhibition of nuclear factor kappa B transcription activity drives a synergistic effect of pyrrolidine dithiocarbamate and cisplatin for treatment of renal cell carcinoma. Apoptosis 15, 412-425. https://doi.org/10.1007/s10495-009-0414-y
  13. Nagaraj, S.R., Shilpa, P., Rachaiah, K., and Salimath, B.P. (2013). Crosstalk between VEGF and MTA1 signaling pathways contrib-ute to aggressiveness of breast carcinoma. Mol. Carcinog. [Epub ahead of print].
  14. Reddy, S.D., Pakala, S.B., Molli, P.R., Sahni, N., Karanam, N.K., Mudvari, P., and Kumar, R. (2012). Metastasis-associated protein 1/histone deacetylase 4-nucleosome remodeling and deacetylase complex regulates phosphatase and tensin homolog gene expression and function. J. Biol.Chem. 287, 27843-27850. https://doi.org/10.1074/jbc.M112.348474
  15. Salot, S., and Gude, R. (2013). MTA1-mediated transcriptional repression of SMAD7 in breast cancer cell lines. Eur. J.Cancer 49, 492-499. https://doi.org/10.1016/j.ejca.2012.06.019
  16. Serin, M., Erkal, H.S., and Cakmak, A. (1999). Radiation therapy and concurrent cisplatin in management of locoregionally advanced nasopharyngeal carcinomas. Acta Oncol. 38, 1031-1035. https://doi.org/10.1080/028418699432310
  17. Shafee, N., Smith, C.R., Wei, S., Kim, Y., Mills, G.B., Hortobagyi, G.N., Stanbridge, E.J., and Lee, E.Y. (2008). Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res. 68, 3243-3250. https://doi.org/10.1158/0008-5472.CAN-07-5480
  18. Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J., and Dirks, P.B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821-5828.
  19. Song, Q., Zhang, H., Wang, M., Song, W., Ying, M., Fang, Y., Li, Y., Chao, Y., and Zhu, X. (2013). MTA1 promotes nasopharyngeal carcinoma growth in vitro and in vivo. J.Exp.Clin.Cancer Res. 32, 54. https://doi.org/10.1186/1756-9966-32-54
  20. Spano, J.P., Busson, P., Atlan, D., Bourhis, J., Pignon, J.P., Esteban, C., and Armand, J.P. (2003). Nasopharyngeal carcinomas: an update. Eur. J.Pharmacol. 39, 2121-2135.
  21. Venkatesha, V.A., Parsels, L.A., Parsels, J.D., Zhao, L., Zabludoff, S.D., Simeone, D.M., Maybaum, J., Lawrence, T.S., and Morgan, M.A. (2012). Sensitization of pancreatic cancer stem cells to gemcitabine by Chk1 inhibition. Neoplasia 14, 519-525. https://doi.org/10.1593/neo.12538
  22. Vinogradov, S., and Wei, X. (2012). Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine 7, 597-615. https://doi.org/10.2217/nnm.12.22
  23. Wang, H., Zhang, G., Zhang, H., Zhang, F., Zhou, B., Ning, F., Wang, H.S., Cai, S.H., and Du, J. (2014). Acquisition of epithelialmesenchymal transition phenotype and cancer stem cell-like properties in cisplatin-resistant lung cancer cells through AKT/beta-catenin/Snail signaling pathway. Eur. J. Pharmacol. 723, 156-166. https://doi.org/10.1016/j.ejphar.2013.12.004
  24. Zhang, Y., Ng, H.H., Erdjument-Bromage, H., Tempst, P., Bird, A., and Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924-1935. https://doi.org/10.1101/gad.13.15.1924

피인용 문헌

  1. Cytoplasmic translocation of MTA1 coregulator promotes de-repression of SGK1 transcription in hypoxic cancer cells vol.36, pp.37, 2017, https://doi.org/10.1038/onc.2017.19
  2. Implications of cancer stem cells in developing therapeutic resistance in oral cancer vol.62, 2016, https://doi.org/10.1016/j.oraloncology.2016.10.008
  3. MiR-183 overexpression inhibits tumorigenesis and enhances DDP-induced cytotoxicity by targeting MTA1 in nasopharyngeal carcinoma vol.39, pp.6, 2017, https://doi.org/10.1177/1010428317703825
  4. Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy vol.18, pp.7, 2017, https://doi.org/10.3390/ijms18071506
  5. Epigenomic regulation of oncogenesis by chromatin remodeling vol.35, pp.34, 2016, https://doi.org/10.1038/onc.2015.513
  6. HLA-A2-Restricted Epitopes Identified from MTA1 Could Elicit Antigen-Specific Cytotoxic T Lymphocyte Response vol.2018, pp.2314-7156, 2018, https://doi.org/10.1155/2018/2942679
  7. High NEK2 confers to poor prognosis and contributes to cisplatin-based chemotherapy resistance in nasopharyngeal carcinoma pp.07302312, 2018, https://doi.org/10.1002/jcb.27632
  8. MTA1 promotes viability and motility in nasopharyngeal carcinoma by modulating IQGAP1 expression vol.119, pp.5, 2018, https://doi.org/10.1002/jcb.26494
  9. MTA2-mediated inhibition of PTEN leads to pancreatic ductal adenocarcinoma carcinogenicity vol.10, pp.3, 2019, https://doi.org/10.1038/s41419-019-1424-5
  10. Upregulation of metastasis-associated gene 2 promotes cell proliferation and invasion in nasopharyngeal carcinoma vol.9, pp.None, 2014, https://doi.org/10.2147/ott.s96518