DOI QR코드

DOI QR Code

Polypropylene/Polyamide Elastomer Blends: Morphology and Mechanical Property

폴리프로필렌/폴리아미드 엘라스토머 블렌드: 모폴로지와 기계적 물성

  • Liu, Qingsheng (Key Laboratory of Eco-Textiles (Ministry of Education), Jiangnan University) ;
  • Xu, Yan (Key Laboratory of Eco-Textiles (Ministry of Education), Jiangnan University) ;
  • Zhang, Hongxia (Wuxi Entry-Exit Inspection and Quarantine Bureau) ;
  • Li, Yuhao (China Nonwovens & Industrial Textiles Association) ;
  • Deng, Bingyao (Key Laboratory of Eco-Textiles (Ministry of Education), Jiangnan University)
  • Received : 2014.02.10
  • Accepted : 2014.04.22
  • Published : 2014.09.25

Abstract

The polypropylene/polyamide elastomer (PP/PAE) blends were prepared by melt mixing. PP and PAE in PP/ PAE were immiscible completely. The size of PAE domains was large and the clear gap in the interface between PP and PAE existed, which did not meet the conditions enhancing toughness of polymers by elastomer. Therefore, maleic anhydride grafted polypropylene (MP) was used to improve the miscibility between PP and PAE. The miscibility between PP and PAE was improved and the size of dispersed phase PAE decreased by introducing MP. The crystallization of PP became easier by introducing PAE as a nucleating agent. With the increase of PAE content, the melt-crystallization temperatures of PP components in PP/PAE/MP blends increased gradually. The melt-crystallization of the polytetramethylene oxide segment of PAE component in PP/PAE blends were hampered by PP component. In addition, PAE can enhance significantly the toughness of PP, and the tensile strength and modulus did not decrease.

Keywords

References

  1. M. Denac, I. Smit, and V. Musil, Compos. Part A: Appl. Sci. Manuf., 36, 1094 (2005). https://doi.org/10.1016/j.compositesa.2005.01.022
  2. M. Denac, V. Musil, and I. Smit, Compos. Part A: Appl. Sci. Manuf., 36, 1282 (2005). https://doi.org/10.1016/j.compositesa.2005.01.011
  3. J. H. Park, Y.-T. Sung, W. N. Kim, J. H. Hong, B. K. Hong, T. W. Yoo, and H. G. Yoon, Polymer(Korea), 29, 19 (2005).
  4. K.-H. Seo and J.-C. Lim, Polymer(Korea), 25, 707 (2001).
  5. M. L. Q. A. Kaneko, R. B. Romero, R. E. F. D. Paiva, M. I. Felisberti, M. C. Goncalves, and I. V. P. Yoshida, Polym. Compos., 34, 194 (2013). https://doi.org/10.1002/pc.22393
  6. L. Zhang, R. Huang, G. Wang, L. Li, H. Ni, and X. Zhang, J. Appl. Polym. Sci., 86, 2085 (2002). https://doi.org/10.1002/app.11163
  7. R. Keskin and S. Adanur, Polym.-Plast. Technol. Eng., 50, 20 (2011). https://doi.org/10.1080/03602559.2010.512344
  8. M. Ichazo, M. Hernandez, J. Gonzalez, C. Albano, and N. Dominguez, Polym. Bull., 51, 419 (2004). https://doi.org/10.1007/s00289-004-0233-9
  9. S. P. Bao and S. C. Tjong, Compos. Part A: Appl. Sci. Manuf., 38, 378 (2007). https://doi.org/10.1016/j.compositesa.2006.03.005
  10. W. Zhang, L. Chen, and Y. Zhang, Polymer, 50, 1311 (2009). https://doi.org/10.1016/j.polymer.2009.01.032
  11. R. Zhao and G. Dai, J. Appl. Polym. Sci., 86, 2486 (2002). https://doi.org/10.1002/app.11003
  12. N. Bitinis, R. Verdejo, P. Cassagnau, and M. A. Lopez-Manchado, Mater. Chem. Phys., 129, 823 (2011). https://doi.org/10.1016/j.matchemphys.2011.05.016
  13. Q. Liu, H. Zhang, M. Zhu, Z. Dong, C. Wu, J. Jiang, X. Li, F. Luo, Y. Gao, B. Deng, Y. Zhang, J. Xing, H. Wang, and X. Li, Fiber. Polym., 14, 1688 (2013). https://doi.org/10.1007/s12221-013-1688-9
  14. E. S. Ogunniran, R. Sadiku, S. S. Ray, and N. Luruli, Macromol. Mater. Eng., 297, 627 (2012). https://doi.org/10.1002/mame.201100254

Cited by

  1. Attaining Toughness and Reduced Electrical Percolation Thresholds in Bio-Based PA410 by Combined Addition of Bio-Based Thermoplastic Elastomers and CNTs vol.13, pp.19, 2014, https://doi.org/10.3390/polym13193420