DOI QR코드

DOI QR Code

Synthesis of Polyurethanes Containing Poly(dimethyl siloxane) and Their Thermal and Shape Memory Properties

폴리디메틸실록산 성분을 포함하는 폴리우레탄의 합성과 이들의 열적 및 형상기억 특성

  • Ra, Sang Hee (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Young Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 라상희 (숭실대학교 유기신소재.파이버공학과) ;
  • 김영호 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2014.02.07
  • Accepted : 2014.03.29
  • Published : 2014.09.25

Abstract

Polyurethanes containing poly(dimethyl siloxane) (PDMS) unit, PU-Si, were synthesized and their thermal and shape memory properties were investigated. Various amounts of PDMS units were incorporated via a solution polymerization method using mixed diols of poly(tetramethylene ether glycol) (PTMEG) and PDMS-diol as the soft segment (SS) and methylene diphenyl diisocyanate and 1,4-butanediol as the hard segment (HS). Two series of PU-Si samples with an HS content of 23% or 32% were prepared and analyzed. For PU-Si with an HS content of 23%, both the cold crystallization temperature ($T_{cc}$) and melt crystallization temperature of the SS domain moved higher temperature with increasing PDMS content, while the melting temperature ($T_m$) of the SS domain remained unaffected. The increase in HS content from 23% to 32% resulted in the increased $T_m$ and disappearance of $T_{cc}$. The shape recovery of PU-Si flim with an HS content of 32% increased while its shape retention decreased as PDMS content increased.

폴리(디메틸 실록산)(PDMS) 성분을 포함하는 폴리우레탄(PU-Si)을 합성하고 이들의 열적 특성과 형상기억 특성을 분석하였다. 이를 위하여 메틸렌디페닐 디이소시아네이트와 1,4-부탄디올을 하드세그먼트(HS) 성분으로 하고, 소프트세그먼트(SS) 성분으로 PDMS 디올과 폴리(테트라메틸렌 에테르 글리콜)(PTMEG) 혼합폴리올을 사용하여 HS 함량이 각각 23%와 32%이면서 PDMS 함량이 다른 PU-Si를 용액중합법으로 합성하였다. HS 함량이 23%인 PU-Si의 경우 PDMS 함량 증가에 따라 SS의 냉결정화온도($T_{cc}$)와 용융결정화온도는 증가하였으나 용융온도($T_m$)에는 변화가 없었다. HS 함량이 32%인 시료들의 경우 PTMEG의 $T_m$이 HS 함량 23%인 시료들보다 약간 높은 온도에서 나타났으며 $T_{cc}$는 관찰되지 않았다. PDMS 성분이 포함된 PU-Si 필름들은 PU에 비해 형태고정성은 약간 좋지 않지만 형상기억 효과는 더 우수하였다.

Keywords

References

  1. W. Small, P. Singhal, T. S. Wilson, and D. J. Maitland, J. Mater. Chem., 20, 3356 (2010). https://doi.org/10.1039/b923717h
  2. M. K. Jang, A. Hartwig, and B. K. Kim, J. Mater. Chem., 19, 1166 (2009). https://doi.org/10.1039/b816691a
  3. Y. Cai, J. S. Jiang, B. Zheng, and M. R. Xie, J. Appl. Polym. Sci., 127, 49 (2013). https://doi.org/10.1002/app.36849
  4. L. Hojabri, X. Kong, and S. S. Narine, Biomacromolecules, 10, 884 (2009). https://doi.org/10.1021/bm801411w
  5. C. Hamciue, E. Hamciue, and L. Okrasa, Macromol. Res., 19, 250 (2011). https://doi.org/10.1007/s13233-011-0311-4
  6. S. Ansari, J. M. Varghese, and K. R. Dayas, Polym. Adv. Technol., 20, 459 (2009). https://doi.org/10.1002/pat.1294
  7. S. Rahmani and A. A. Entezami, Macromol. Res., 19, 221 (2011). https://doi.org/10.1007/s13233-011-0313-2
  8. T. Choi, J. Weksler, A. Padsalgikar, and J. Runt, Polymer, 50, 2320 (2009). https://doi.org/10.1016/j.polymer.2009.03.024
  9. A. E. Ciolino, L. R. Gomez, D. A. Vega, M. A. Villar, and E. M. Valles, Polymer, 49, 5191 (2008). https://doi.org/10.1016/j.polymer.2008.09.058
  10. L. Jiao, P. Zhaoqi, and G. Yun, J. Appl. Polym. Sci., 105, 3037 (2007). https://doi.org/10.1002/app.26371
  11. H. Jiang, Z. Zheng, W. Song, and X. Wang, J. Appl. Polym. Sci., 108, 3644 (2008). https://doi.org/10.1002/app.27343
  12. C. H. Lin, W. C. Lin, and M. C. Yang, Colloids Surf. B, 71, 36 (2009). https://doi.org/10.1016/j.colsurfb.2009.01.002
  13. Z. Yang, J. Hu, Y. Liu, and L. Yeung, Mater. Chem. Phys., 98, 368 (2006). https://doi.org/10.1016/j.matchemphys.2005.09.065
  14. F. J. Korpela and T. T. Pakkanen, Eur. Polym. J., 47, 1694 (2011). https://doi.org/10.1016/j.eurpolymj.2011.06.006
  15. J. Mattia and P. Painter, Macromolecules, 40, 1546 (2007). https://doi.org/10.1021/ma0626362
  16. Q. M. Jia, M. Zheng, Y. C. Zhu, J. B. Li, and C. Z. Xu, Eur. Polym. J., 43, 35 (2007). https://doi.org/10.1016/j.eurpolymj.2006.10.016
  17. N. R. Shin, B. C. Kwon, K. H. Park, and H. S. Lee, Text. Sci. Eng., 44, 1 (2007).
  18. Y. Lu and R. C. Larock, Biomacromolecules, 9, 3332 (2008). https://doi.org/10.1021/bm801030g
  19. H. Rao, Z. Zhang, C. Song, and T. Qiao, React. Funct. Polym., 71, 537 (2011). https://doi.org/10.1016/j.reactfunctpolym.2011.01.001
  20. D. W. Kang and S. W. Park, Polymer(Korea), 35, 488 (2011).
  21. Y. C. Chung, N. K. Lim, J. W. Choi, and B. C. Chun, J. Intell. Mater. Syst. Struct., 20, 1163 (2009). https://doi.org/10.1177/1045389X09103659
  22. F. Askari, M. Barikani, and M. Barmar, J. Appl. Polym. Sci., 130, 1743 (2013). https://doi.org/10.1002/app.39299
  23. D. Fragiadakis and J. Runt, Macromolecules, 46, 4184 (2013). https://doi.org/10.1021/ma4006395
  24. F. L. Ji, J. L. Hu, W. M. W. Yu, and S. S. Y. Chiu, J. Macromol. Sci. Phys., 50, 2290 (2011). https://doi.org/10.1080/00222348.2011.562091
  25. S. J. Hong, W. R. Yu, and J. H. Youk, Macromol. Res., 16, 644 (2008). https://doi.org/10.1007/BF03218574
  26. S. Chen, J. Hu, Y. Liu, H. Liem, Y. Zhu, and Y. Liu, J. Polym. Sci. Part B: Polym. Phys., 45, 444 (2007). https://doi.org/10.1002/polb.21046
  27. L. Wang, X. Yang, H. Chen, G. Yang, T. Gong, W. Li, and S. Zhou, Polym. Chem., 4, 4461 (2013). https://doi.org/10.1039/c3py00519d
  28. L. H. Sperling, Introduction to Physical Polymer Science, John Wiley&Sons, Singapore, 1992.