DOI QR코드

DOI QR Code

Synthesis and Characterization of Thermoplastic Elastomer Poly(ether-b-amide) Containing Aromatic Moiety

방향족 구조가 포함된 열가소성 탄성체 Poly(ether-b-amide)의 합성 및 특성

  • Lee, Ji Hun (Major in Polymer Engineering, Dept. of Adv. Material Eng., Kongju National University) ;
  • Kim, Hyung Joong (Major in Polymer Engineering, Dept. of Adv. Material Eng., Kongju National University)
  • 이지훈 (공주대학교 공과대학 신소재공학부 고분자공학전공) ;
  • 김형중 (공주대학교 공과대학 신소재공학부 고분자공학전공)
  • Received : 2014.02.05
  • Accepted : 2014.04.08
  • Published : 2014.09.25

Abstract

Polyamide (PA) oligomers, which are the hard segment of poly(ether-block-amide) (PEBA), presenting thermoplastic and high performance elastomeric properties were prepared by polycondensation between 4-aminobenzoic acid and 12-aminododecanoic acid. Subsequently PEBAs were obtained by addition polymerization of the PA oligomers and various molecular weights of poly(tetramethylene glycol) (PTMG). The structure of the final PEBA was identified by using FTIR and $^1H$ NMR and the thermal properties depending on changes in the structure of hard segment were collected by using DSC and UTM analysis. As the results, the melt temperature ($T_m$), the initial modulus, and the maximum strength of PEBAs increased with an increase in aromatic moiety up to 30% without reducing crystallinity.

방향족 구조를 포함하고 분자량이 조절된 polyamide(PA) 올리고머를 4-aminobenzoic acid와 12-aminododecanoic acid의 축합반응으로 합성하였다. 이 올리고머를 여러 분자량의 polytetramethylene glycol(PTMG)과 축합하여 PA를 hard segment로 하고 PTMG를 soft segment로 하는 열가소성 탄성체로서 poly(ether-b-amide)(PEBA)를 제조하였다. 합성된 PEBA의 구조는 FTIR과 $^1H$ NMR로 확인하였으며 DSC와 UTM을 사용하여 hard segment의 구조변화에 따른 열적특성과 기계적 성질의 변화를 비교해 본 결과 방향족 구조를 30%까지 포함할 때 결정성의 변화 없이 PEBA들의 용융온도는 높아졌고 초기 modulus와 strength는 더 크게 나타났다.

Keywords

References

  1. J. P. Sheth, J. Xu, and G. L. Wikes, Polymer, 44, 743 (2003). https://doi.org/10.1016/S0032-3861(02)00798-X
  2. G. Holdn, N. R. Legge, R. P. Quirk, and H. E. Schroedder, Thermoplstic Elastomers, 2nd Ed., Immergut & Glober, New York, 1996.
  3. D. H. Kim, J. H. Lee, and H. J. Kim, Polymer(Korea), 36, 513 (2012).
  4. H. M. Jeong, S. W. Moon, J. Y. Jho, and T. O. Ahn, Polymer (Korea), 20, 823 (1996).
  5. M. Peyravi, A. A. Babaluo, M. A. Ardestani, M. K. Razavi Aghjeh, S. R. Pishghadam, and P. Hadi, J. Appl. Polym. Sci., 118, 1211 (2010).
  6. T. H. Kim, J. S. Lee, and K. J. Kim, J. Korean Fiber Society, 41, 458 (2004).
  7. A. Boulares, M. Tessier, and E. Marechal, Polymer, 41, 3561 (2000). https://doi.org/10.1016/S0032-3861(99)00526-1
  8. Y. Song, H. Yamamoto, and N. Etomo, Macromolecules, 37, 6219 (2004). https://doi.org/10.1021/ma0400620
  9. K. S. Lee, M. C. Choi, S. M. Kim, and Y. W. Chang, Elast. Compos., 45, 156 (2010).
  10. F. X. Lin, Y. F. Zou, X. L. Luo, Y. H. Huang, and G. F. Zhou, Polym. Mater. Sci. Eng., 8, 50 (1992).
  11. R. J. Gaymans, P. Schwering, and J. L. de Haan, Polymer, 30, 974 (1989). https://doi.org/10.1016/0032-3861(89)90066-9
  12. P. F. van Hutten, E. Walch, A. H. M. Veeken, and R. J. Gaymans, Polymer, 31, 524 (1990). https://doi.org/10.1016/0032-3861(90)90397-H