DOI QR코드

DOI QR Code

Preparation and Characterization of Hybrid Ozone Resistance Coating Film Using Carbon Nanotube

탄소나노튜브를 이용한 하이브리드 내오존성 코팅 막의 제조 및 특성

  • Kim, Sung Rae (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Sang Goo (Division of Green Chemistry, Korea Research Institute of Chemical Technology) ;
  • Yang, Jeong Min (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • 김성래 (충북대학교 화학공학과) ;
  • 이상구 (한국화학연구원 그린화학연구단) ;
  • 양정민 (충북대학교 화학공학과) ;
  • 이종대 (충북대학교 화학공학과)
  • Received : 2014.01.22
  • Accepted : 2014.03.31
  • Published : 2014.09.25

Abstract

The effect of synthesis conditions such as carbon nanotube (CNT), 2,2,2-trifluoroethylmethacrylate (3FMA), and composition of organic-inorganic material in ozone resistance and surface characteristics of ultraviolet cured organic-inorganic hybrid coating film has been investigated. Coating solution was prepared using tetraethoxysilane (TEOS), silane coupling agent methacryloyloxypropyltrimethoxysilane (MPTMS), 3FMA, various organic materials with acrylate group, and CNT, then bar-coated on substrates using applicator, and densified by UV-curing. It was found that ozone resistance and adhesion of the coating film were strongly dependent upon contents of TEOS, 3FMA, and CNT. Especially, ozone resistance, adhesion, and surface hardness of coating film with CNT were improved, relatively. Ozone resistance of coating film with a high TEOS content was increased, but adhesion was decreased. In addition, it was also found that ozone resistance of coating film was increased with contents of 3FMA. On the other hand, surface hardness was decreased with increase of 3FMA.

탄소나노튜브(CNT), 불소계 아크릴레이트 2,2,2-trifluoroethylmethacrylate(3FMA) 및 유-무기 조성비와 같은 합성조건을 달리하여 제조된 자외선 경화형 유-무기 하이브리드 코팅 막의 표면특성 및 내오존성에 대해 연구하였다. 코팅 막은 금속 알콕사이드 전구체인 tetraethoxysilane(TEOS)와 실란 커플링제인 methacryloyloxypropyltrimethoxysilane (MPTMS)로 구성된 유-무기 혼성 용액에 탄소나노튜브 및 3FMA와 자외선 경화를 위한 유기물을 첨가하여 제조된 코팅제를 자외선 경화시켜 제조하였다. 제조된 코팅 막의 내오존성 및 기재와의 접착력은 TEOS, 3FMA 및 CNT의 함량에 크게 영향을 받는다는 것을 확인하였다. 특히, 탄소나노튜브가 첨가된 코팅 막은 우수한 내오존성 및 접착력 뿐만 아니라 높은 표면경도를 나타내었다. TEOS의 경우, 함량이 증가할수록 표면경도 및 내오존성은 향상되었지만, 기재와의 접착력은 감소되었다. 불소아크릴레이트 3FMA의 경우, 함량이 증가할수록 내오존성은 향상되었지만 표면경도는 감소하였다.

Keywords

Acknowledgement

Grant : 내오존성이 우수한 고도정수처리시설용 방수/방식재 및 시공기술개발

Supported by : 국토해양부

References

  1. S. K. Oh, G. S. Kwak, and S. D. Yang, J. Arch. Inst. Korea, 19, 87 (2003).
  2. H. S. Park, C. M. Yeom, and J. Y. Yoon, Journal of Korean Water and Wastewater Works Association (KWWA), 15, 279 (2001).
  3. J. M. Jung, S. W. Kwon, and S. K. Oh, J. Korean Inst. Building Construction, 5, 33 (2005).
  4. K. S. Kwak, H. J. Seo, H. Miyauchi, G. Y. Kim, and S. K. Oh, J. Arch. Inst. Korea, 26, 79 (2010).
  5. S. H. Kim, Master of Engineering Thesis, University of Seoul (2010).
  6. F. Samson, Coat. Technol., 81, 79 (1996). https://doi.org/10.1016/0257-8972(95)02532-4
  7. Y. J. Shin, D. H. Yang, M. H. Oh, Y. S. Yoon, and J. S. Shin, J. Ind. Eng. Chem., 15, 238 (2009). https://doi.org/10.1016/j.jiec.2008.09.009
  8. T. Jaworek, H. Bankowsky, R. Koniger, W. Reich, W. Schrof, and R. Schwalm, Macromol. Symp., 159, 197 (2000).
  9. C. Decker, T. Nguyen, T. Viet, D. Decker, and E. Weber-Koehl, Polym., 42, 5531 (2001). https://doi.org/10.1016/S0032-3861(01)00065-9
  10. T. Gururaj, R. Subasri, K. R. C. Soma Raju, and G. Padmanabham, Appl. Surf. Sci., 257, 15 (2011).
  11. C. H. Lee, S. G. Lee, S. R. Kim, and J. D. Lee, Korea Chem. Eng. Res., 50, 421 (2012). https://doi.org/10.9713/kcer.2012.50.3.421
  12. S. Sethi and A. Dhinojwala, Langmuir, 25, 4311 (2009). https://doi.org/10.1021/la9001187
  13. S. B. Lee, "Technology trends of fluoride materials", Chemical Materials Information Bank Report (2010).
  14. J. U. Won, J. P. Joen, and B. J. Lee, Polym. Sci. Tech., 14, 206 (2003).
  15. Y. T. Hong, J. H. Lee, and Y. S. Kim, Polym. Sci. Tech., 13, 724 (2002).
  16. A. Qu, X. Wen, P. Pi, J. Cheng, and Z. Yang, Colloids Surf. A: Physicochem. Eng. Aspects, 345, 18 (2009). https://doi.org/10.1016/j.colsurfa.2009.03.035
  17. K. Song, Y. Zhang, J. Meng, E. C. Green, N. Tajaddod, H. Li, and M. L. Minus, Materials, 6, 2543 (2013). https://doi.org/10.3390/ma6062543
  18. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, 787 (2002). https://doi.org/10.1126/science.1060928
  19. C. H. Lee, S. G. Lee, and J. D. Lee, Polymer(Korea), 36, 1 (2012).
  20. S. Sepeur, N. Kunze, B. Werner, and H. Schmidt, Thin Solid Films, 351, 1793 (1999).
  21. Y. W. Do, D. S. Yu, J. H. Lee, S. A. Park, and J. W. Ha, Appl. Chem., 11, 9 (2007).
  22. S. Karatas, C. Kizilkaya, N. Kayaman-Apohan, and A. Gungor, Prog. Org. Coat., 60, 140 (2007). https://doi.org/10.1016/j.porgcoat.2007.07.010

Cited by

  1. 불소계 변성 폴리우레아의 합성 및 오존저항 특성 vol.54, pp.2, 2014, https://doi.org/10.9713/kcer.2016.54.2.175