DOI QR코드

DOI QR Code

Temperature vs. Resistance Characteristics by Dopants of VO2 Thick-Film Critical Temperature Sensors

불순물 첨가에 따른 VO2 후막 급변온도센서의 온도-저항 특성

  • Choi, Jung Bum (Department of Materials Science and Engineering, University of Seoul) ;
  • Kang, Chong Yun (Electronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Seok-Jin (Electronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Yoo, Kwang Soo (Department of Materials Science and Engineering, University of Seoul)
  • 최정범 (서울시립대학교 신소재공학과) ;
  • 강종윤 (한국과학기술연구원 전자재료연구센터) ;
  • 윤석진 (한국과학기술연구원 전자재료연구센터) ;
  • 유광수 (서울시립대학교 신소재공학과)
  • Received : 2014.08.18
  • Accepted : 2014.09.19
  • Published : 2014.09.30

Abstract

For various additives doped-$VO_2$ critical temperature sensors using the nature of semiconductor to metal transition, the crystallinity, microstructure, and temperature vs. resistance characteristics were systematically investigated. As a starting material of $VO_2$ sensor, vanadium pentoxide ($V_2O_5$) powders were used, and CaO, SrO, $Bi_2O_3$, $TiO_2$, and PbO dopants were used, respectively. The $V_2O_5$ powders with dopants were mixed with a vehicle to form paste. This paste was silk screen-printed on $Al_2O_3$ substrates and then $V_2O_5$-based thick films were heat-treated at $500^{\circ}C$ for 2 hours in $N_2$ gas atmosphere for the reduction to $VO_2$. From X-ray diffraction analysis, $VO_2$ phases for pure $VO_2$, and CaO and SrO-doped $VO_2$ thick films were confirmed and their grain sizes were 0.57 to $0.59{\mu}m$. The on/off resistance ratio of the $VO_2$ sensor in phase transition temperature range was $5.3{\times}10^3$ and that of the 0.5 wt.% CaO-doped $VO_2$ sensor was $5.46{\times}10^3$. The presented critical temperature sensors could be commercialized for fire-protection and control systems.

Keywords

References

  1. D. Alder, "Mechanisms for metal-nonmental transitions in transition-metal oxides and sulfides", Rev. Mod. Phys., Vol. 40, pp. 714-736, 1968. https://doi.org/10.1103/RevModPhys.40.714
  2. C. H. Griffiths and H. K. Eastwood, "Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide", J. Appl. Phys., Vol. 45, No. 5, pp. 2201-2206, 1974. https://doi.org/10.1063/1.1663568
  3. K. S. Yoo, J. M. Kim, and H. J. Jung, "Electrical properties of semiconducting $VO_2$-based critical temperature sensors", J. Kor. Ceram. Soc., Vol. 30, No. 10, pp. 866-870, 1993.
  4. Y. Muraoka, Y. Ueda, and Z. Hiroi, "Large modification of the metal-insulator transition temperature in strained $VO_2$ films grown $TiO_2$ substrates", J. Phys and Chem. of Solids, Vol. 63, pp. 965-967, 2002. https://doi.org/10.1016/S0022-3697(02)00098-7
  5. J. B. Goodenough and H. Y-P. Hong, "Structures and a two-band model for the system $V_{1-x}Cr_xO_2$", Phys. Rev. B, Vol. 8, No. 4, pp. 1323-1331, 1973. https://doi.org/10.1103/PhysRevB.8.1323
  6. K. H. Song and K. S. Yoo, "Characterization of $VO_2$ thin-film critical temperature sensors by heat treatment conditions", J. Sensor Sci. & Tech., Vol. 16, No. 6, pp. 407-412, 2007. https://doi.org/10.5369/JSST.2007.16.6.407
  7. E. Kusano and J. A. Theil, "Effects of microstructure and nonstoichiometry on electrical properties of vanadium dioxide films", J. Vac. Sci. Technol., Vol. 7, No. 3, pp. 1314-1317, 1989. https://doi.org/10.1116/1.576277
  8. A. Razavi, T. Hughes, J. Antinovitch, and J. Hoffman, "Temperature effects on structure and optical properties of radio-frequency sputtered $VO_2$", J. Vac. Sci. Technol. A, Vol. 7, No. 3, pp. 1310-1313, 1989. https://doi.org/10.1116/1.576276
  9. J. F. De Natale, P. J. Hood, and A. B. Harker, "Formation and characterization of grain-oriented $VO_2$ thin films", J. Appl. Phys., Vol. 66, No. 12, pp. 5844-5850, 1989. https://doi.org/10.1063/1.343605
  10. R. E. Marvel, K. Appavoo, B. K. Choi, J. Nag, and R. F. Haglund, Jr., "Electron-beam deposition of vanadium dioxide thin films", Appl. Phys. A, Vol. 111, pp. 975-981, 2013. https://doi.org/10.1007/s00339-012-7324-5
  11. R. A. Timm, M. P. H. Falla, M. F. G. Huila, H. E. M. Peres, F. J. Ramirez-Frenandez, K. Araki, and H. E. Toma, "Vanadium oxide-porphyrin nanocomposites as gas sensor interfaces for probing low water content in ethanol", Sens. Actuator B-Chem., Vol. 146, pp. 61-68, 2010. https://doi.org/10.1016/j.snb.2010.01.045
  12. N. R. Miyuka, G. A. Nikalasson, and C. G. Granqvist, "Mg doping of thermochromic $VO_2$ films enhances the optical transmittance and decreases the metal-insulator transition temperature", Appl. Phys. Lett., Vol. 95, p. 171909, 2009. https://doi.org/10.1063/1.3229949
  13. Y. Zhu, J. Na, F. He, and Y. Zhou, "The characteristics of Au: $VO_2$ nanocomposite thin film for photo-electricity applications", Physica E, Vol. 52, pp. 112-115, 2013. https://doi.org/10.1016/j.physe.2013.04.005
  14. K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund, Jr., "Role of defects in the phase transition of $VO_2$ nanoparticles probed by plasmon resonance spectroscopy", Nano Lett., Vol. 12, pp. 780-786, 2012. https://doi.org/10.1021/nl203782y
  15. H. Fukuma and M. Aoki, "Effects of various doping elements on the transition temperature of vanadium oxide semiconductors", Jpn. J. Appl. Phys., Vol. 8, No. 8, pp. 1008-1013, 1969. https://doi.org/10.1143/JJAP.8.1008
  16. Y. Ningyi, L. Jinhua, and L. Chenglu, "Valence reduction process from sol-gel $V_2O_5$\;to\;VO_2 thin films", Appl. Surf. Sci., Vol. 191, pp. 176-180, 2002. https://doi.org/10.1016/S0169-4332(02)00180-0
  17. J. Verkelis, Z. Bliznikas, K. Breive, V. Dikinis, and R. Sarmaitis, "Vanadium oxides thin films and fixed temperature heat sensor with memory", Sens. Actuator A-Phys., Vol. 68, pp. 338-343, 1998. https://doi.org/10.1016/S0924-4247(98)00054-5