DOI QR코드

DOI QR Code

Effects of Turbulence Intensities on Wake Models of Horizontal Wind Turbines

난류 강도가 수평축 풍력발전기 후류 모델에 미치는 영향

  • Received : 2014.07.11
  • Accepted : 2014.07.23
  • Published : 2014.08.30

Abstract

In this paper, wind tunnel tests of a scaled wind turbine have been performed to investigate the effects of turbulent intensity of oncoming flow on turbine wake field. The scaled turbine model was carefully designed to satisfy the similarity conditions. The wind velocities and turbulent intensities were measured using hotwire anemometer in order to compare with existing wake model. It was found from the tests that the existing wake models well fit with test results at turbulent flow rather than at uniform flow. Finally modified wake model has been proposed based on the measured data.

본 논문에서는 난류 강도가 풍력발전기 후류에 미치는 영향을 살펴보기 위하여 축소된 풍력발전기 모델을 이용하여 풍동실험을 수행하였다. 실험 결과 측정 위치에 따라 풍력발전기가 가지는 특성에 따라 후류의 형태가 달라지며, 난류 강도에 따른 영향이 반드시 고려되어야 하는 것으로 나타났다. 난류 강도만을 일부 고려한 격자 난류 조건에서 등류 조건보다 기존의 후류 모델과 보다 더 잘 일치하는 경향을 보이고 있으며, 측정된 난류 강도 값을 바탕으로 수정된 후류 모델을 제안하였다. 향후 다양한 난류 특성이 고려된 합리적인 모델이 필요하다고 판단된다.

Keywords

References

  1. Cal, R.B., Lebron, J., Castillo, L., Kang, H.S., Meneveau, C. (2010). Experimental Study of the Horizontally Averaged Flow Structure in a Model Wind-turbine Array Boundary Layer, J. of Renewable Sustainable Energy, 2, 013106. https://doi.org/10.1063/1.3289735
  2. Chamorro, L.P., Porte-Agel, F. (2009). A Wind-tunnel Investigation of Wind-turbine Wakes: Boundary-layer Turbulence Effects, Boundary-Layer Meteorology, 132, pp.129-49. https://doi.org/10.1007/s10546-009-9380-8
  3. Choi, H.C., Kim, D.H., Kim, D.M. Park, K.K (2010) Seismic Response Analysis of a MW Class Wind-Turbine Considering Applied Wind Loads, J. Comput. Struct.Eng. Inst. Korea, 23(2), pp.209-216.
  4. Crespo, A., Hernandez, J., Frandsen, S. (1999) Survey of Modelling Methods for Wind Turbine Wakes and Wind Farms, Wind Energy, 2(1), pp.1-24. https://doi.org/10.1002/(SICI)1099-1824(199901/03)2:1<1::AID-WE16>3.0.CO;2-7
  5. Espsna, G., Aubrun, S., Loyer, S., Devinant, P. (2012) Wind Tunnel Study of the Wake Meandering Downstream of a Modelled Wind Turbine as an Effect of Large Scale Turbulent Eddies, J. of Wine Engineering and Industrial Aerodynamics, 101, pp.24-33. https://doi.org/10.1016/j.jweia.2011.10.011
  6. Frandsen, S., Barthelmie, R., Pryor, S., Rathmann O., Larsen, S. Hojstrup, J. (2006), Analytical Modeling of Wind Speed Deficit in Large Offshore Wind Farms, Wind Energy, 9, pp.39-53. https://doi.org/10.1002/we.189
  7. IEC (2005). Wind Turbines. Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines. IEC 61400-12-1. International Electrotechnical Commission.
  8. Kang, H.S., Meneveau, C. (2010). Direct Mechanical Torque Sensor for Model Wind Turbines, Measurement Science and Technology, 21(105206), pp.1-10.
  9. Kim, S.W. (2013). Turbulence Intensity Effects on Small Wind Turbine Power Performance, Journal of the Korean Solar Energy Society, 33(6), pp.19-25. https://doi.org/10.7836/kses.2013.33.6.019
  10. Larsen, G.C., Hojstrup, J. and Madsen, H.A. (1996) Wind Fields in Wakes, EUWEC'96, Gothenburg. Jermany.
  11. McTavish, S., Feszty, D., Nitzsche, F. (2013). Evaluating Reynolds Number Effects in Small-scale Wind Turbine Experiments, J. of Wind Engineering and Industrial Aerodynamics, 120, pp.81-90. https://doi.org/10.1016/j.jweia.2013.07.006
  12. Okulov, V.L., Sorensen, J.N. (2007). Stability of Helical Tip Vortices in a Rotor Far Wake, J. of Fluid Mechanics, 576, pp.1-25. https://doi.org/10.1017/S0022112006004228
  13. Renkema D.J. (2007). Validation of Wind Turbine Wake Models Using Wind Farm Data and Wind Tunnel Measurements. Master Thesis, Delft University of Technology.
  14. Vermeer, L.J., Sorensen, J.N., Crespo, A. (2003). Wind Turbine Wake Aerodynamics, Aerospace Sciences, 39, pp.467-510. https://doi.org/10.1016/S0376-0421(03)00078-2
  15. Yoo, N.S., Yoon, K.Y. (2008) A Study on Effect of Wind Characteristics on the Wind Turbine Power Output, J. of Wind Engineering Institute of Korea, 12(2), pp.75-83.

Cited by

  1. Evaluation of a Grid System for Numerical Analysis of a Small Savonius Wind Turbine vol.27, pp.5, 2016, https://doi.org/10.7316/KHNES.2016.27.5.547