DOI QR코드

DOI QR Code

Numerical Simulation of Membrane of LNG Insulation System using User Defined Material Subroutine

사용자지정 재료 서브루틴을 활용한 LNG선박 단열시스템 멤브레인의 수치해석

  • Kim, Jeong-Hyeon (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Kim, Seul-Kee (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Kim, Myung-Soo (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • 김정현 (부산대학교 조선해양공학과) ;
  • 김슬기 (부산대학교 조선해양공학과) ;
  • 김명수 (부산대학교 조선해양공학과) ;
  • 이제명 (부산대학교 조선해양공학과)
  • Received : 2014.07.11
  • Accepted : 2014.07.30
  • Published : 2014.08.30

Abstract

304L stainless steel sheets are used as a primary barrier for the insulation of membrane-type liquefied natural gas(LNG) carrier cargo containment system. 304L stainless steel is a transformation-induced-plasticity(TRIP) steel that exhibits complex material behavior, because it undergoes phase transformation during plastic deformation. Since the TRIP behavior is very important mechanical characteristics in a low-temperature environment, significant amounts of data are available in the literature. In the present study, a uniaxial tensile test for 304L stainless steel was performed to investigate nonlinear mechanical characteristics. In addition, a viscoplastic model and damage model is proposed to predict material fractures under arbitrary loads. The verification was conducted not only by a material-based comparative study involving experimental investigations, but also by a structural application to the LNG membrane of a Mark-III-type cargo containment system.

304L 스테인리스강판은 멤브레인타입 LNG선 단열시스템의 1차 방벽으로 이용된다. 304L 스테인리스강은 변태유기소성(TRIP)강으로 복잡한 재료거동을 보이는데, 이는 소성변형이 발생하는 동안 상변태를 경험하기 때문이다. 본 연구에서는 304L 스테인리스 강의 비선형 기계적 거동분석을 위한 온도의존 일축인장시험을 수행하였으며 재료의 파단이나 비선형 거동을 예측하기 위한 점소성모델을 제안하였다. 수치해석의 결과와 시험 결과를 비교 분석하여 유효성을 검증하였으며 LNG 멤브레인에 대한 적용성을 검토하기 멤브레인 구조시편을 제작하여 구조해석 및 유한요소해석을 수행하였다. 재료모델은 개발 서브루틴을 이용하였으며 ABAQUS 사용자지정 재료 서브루틴을 탑재한 유한요소해석 결과와 극저온 구조인장시험을 수행한 결과를 비교하여 구조적용성을 검증하였다.

Keywords

References

  1. Abed, F.H., Voyiadjis, G.Z. (2005) Plastic Deformation Modeling of AL-6XN Stainless Steel at Low and High Strain Rates and Temperatures using a Combination of BCC and FCC Mechanisms of Metals, International Journal of Plasticity, 21, pp.1618-1693. https://doi.org/10.1016/j.ijplas.2004.11.003
  2. Choi, S.W, Roh, J.U., Kim, M.S., Lee, W.I. (2011) Thermal Analysis of Two Main CCS(Cargo Containment System) Insulation Box by using Experimental Thermal Properties, Journal of the Computational Structural Engineering Institute of Korea, 24(4), pp.429-438.
  3. Gupta, A.K., Anirudh, V.K., Singh, S.K. (2013) Constitutive Models to Predict Flow Stress in Austenitic Stainless Steel 316 at Elevated Temperatures, Materials & Design, 43, pp.410-418. https://doi.org/10.1016/j.matdes.2012.07.008
  4. Kim, J.H., Park, W.S., Chun, M.S., Kim, J.J., Bae, J.H., Kim, M.H., Lee, J.M. (2012) Effect of Pre-straining on Low-temperature Mechanical Behavior of AISI 304L, Materials Science and Engineering A, 543, pp.50-57. https://doi.org/10.1016/j.msea.2012.02.044
  5. Kim, S.K., Lee, C.S., Kim, J.H., Kim, M.H., Lee, J.M. (2013) Computational Evaluation of Resistance of Fracture Capacity for SUS304L of Liquefied Natural Gas Insulation System under Cryogenic Temperatures using ABAQUS User-defined Material Subroutine, Materials & Design, 50, pp.522-532. https://doi.org/10.1016/j.matdes.2013.03.064
  6. Ruester, S., Neumann, A. (2008) The Prospects for Liquefied Natural Gas Development in the US, Energy Policy, 36, pp.3160-3168. https://doi.org/10.1016/j.enpol.2008.04.030
  7. Kim, J.H., Lee, C.S., Kim, M.H., Lee, J.M. (2013) Prestrain-dependent Viscoplastic Damage Model for Austenitic Stainless Steel and Implementation to ABAQUS User-defined Material Subroutine, Computational Materials Science, 67, pp.273-281. https://doi.org/10.1016/j.commatsci.2012.08.021
  8. Lee, C.S., Lee, J.M. (2014) Failure Analysis of Reinforced Polyurethane Foam-based LNG Insulation Structure using Damage-coupled Finite Element Analysis, Composite Structures, 107, pp.234-245.
  9. Lee, W.S., Lin, C.H., Chen, T.H., Yang, M.C. (2010) High Temperature Microstructural Evolution of 304L Stainless Steel as Function of Pre-strain and Strain rate, Materials Science and Engineering A, 527, pp.3127-3137. https://doi.org/10.1016/j.msea.2010.02.007
  10. Lee, W.S., Lin, C.F. (2002) Comparative Study of the Impact Response and Microstructure of 304L Stainless Steel with and without Prestrain, Metallurgical and Materials Transactions A, 33, pp.2801-2810. https://doi.org/10.1007/s11661-002-0265-4
  11. Qu, S., Haung, C.X., Gao, Y.L., Yang, G., Wu, S.D., Zang, Q.S., Zhang, Z.F. (2008) Tensile and Compressive Properties of AISI 304L Stainless Steel subjected to Equal Channel Angular Pressing, Materials Science and Engineering A, 475, pp.207-216. https://doi.org/10.1016/j.msea.2007.04.111
  12. Samantaray, D., Mandal, S., Borah, U., Bhaduri, A.K., Sivaprasad, P.V. (2009) A Thermoviscoplastic Constitutive Model to Predict Elevatedtemperature Flow Behavior in a Titanium-modified Austenitic Stainless Steel, Materials Science and Engineering A, 526, pp.1-6. https://doi.org/10.1016/j.msea.2009.08.009
  13. Talonen, J., Nenonen, P., Pape, G., Hanninen, H. (2005) Effect of Strain Rate on the Strain-induced ${\gamma}{\rightarrow}{\alpha}'$-Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels, Metallurgical and Materials Transactions A, 36, pp.421-432. https://doi.org/10.1007/s11661-005-0313-y

Cited by

  1. Evaluation of Cryogenic Compressive Strength of Divinycell of NO 96-type LNG Insulation System vol.30, pp.5, 2016, https://doi.org/10.5574/KSOE.2016.30.5.349
  2. A study of feasibility of using compressed wood for LNG cargo containment system vol.40, pp.4, 2016, https://doi.org/10.5916/jkosme.2016.40.4.307