References
- Abed, F.H., Voyiadjis, G.Z. (2005) Plastic Deformation Modeling of AL-6XN Stainless Steel at Low and High Strain Rates and Temperatures using a Combination of BCC and FCC Mechanisms of Metals, International Journal of Plasticity, 21, pp.1618-1693. https://doi.org/10.1016/j.ijplas.2004.11.003
- Choi, S.W, Roh, J.U., Kim, M.S., Lee, W.I. (2011) Thermal Analysis of Two Main CCS(Cargo Containment System) Insulation Box by using Experimental Thermal Properties, Journal of the Computational Structural Engineering Institute of Korea, 24(4), pp.429-438.
- Gupta, A.K., Anirudh, V.K., Singh, S.K. (2013) Constitutive Models to Predict Flow Stress in Austenitic Stainless Steel 316 at Elevated Temperatures, Materials & Design, 43, pp.410-418. https://doi.org/10.1016/j.matdes.2012.07.008
- Kim, J.H., Park, W.S., Chun, M.S., Kim, J.J., Bae, J.H., Kim, M.H., Lee, J.M. (2012) Effect of Pre-straining on Low-temperature Mechanical Behavior of AISI 304L, Materials Science and Engineering A, 543, pp.50-57. https://doi.org/10.1016/j.msea.2012.02.044
- Kim, S.K., Lee, C.S., Kim, J.H., Kim, M.H., Lee, J.M. (2013) Computational Evaluation of Resistance of Fracture Capacity for SUS304L of Liquefied Natural Gas Insulation System under Cryogenic Temperatures using ABAQUS User-defined Material Subroutine, Materials & Design, 50, pp.522-532. https://doi.org/10.1016/j.matdes.2013.03.064
- Ruester, S., Neumann, A. (2008) The Prospects for Liquefied Natural Gas Development in the US, Energy Policy, 36, pp.3160-3168. https://doi.org/10.1016/j.enpol.2008.04.030
- Kim, J.H., Lee, C.S., Kim, M.H., Lee, J.M. (2013) Prestrain-dependent Viscoplastic Damage Model for Austenitic Stainless Steel and Implementation to ABAQUS User-defined Material Subroutine, Computational Materials Science, 67, pp.273-281. https://doi.org/10.1016/j.commatsci.2012.08.021
- Lee, C.S., Lee, J.M. (2014) Failure Analysis of Reinforced Polyurethane Foam-based LNG Insulation Structure using Damage-coupled Finite Element Analysis, Composite Structures, 107, pp.234-245.
- Lee, W.S., Lin, C.H., Chen, T.H., Yang, M.C. (2010) High Temperature Microstructural Evolution of 304L Stainless Steel as Function of Pre-strain and Strain rate, Materials Science and Engineering A, 527, pp.3127-3137. https://doi.org/10.1016/j.msea.2010.02.007
- Lee, W.S., Lin, C.F. (2002) Comparative Study of the Impact Response and Microstructure of 304L Stainless Steel with and without Prestrain, Metallurgical and Materials Transactions A, 33, pp.2801-2810. https://doi.org/10.1007/s11661-002-0265-4
- Qu, S., Haung, C.X., Gao, Y.L., Yang, G., Wu, S.D., Zang, Q.S., Zhang, Z.F. (2008) Tensile and Compressive Properties of AISI 304L Stainless Steel subjected to Equal Channel Angular Pressing, Materials Science and Engineering A, 475, pp.207-216. https://doi.org/10.1016/j.msea.2007.04.111
- Samantaray, D., Mandal, S., Borah, U., Bhaduri, A.K., Sivaprasad, P.V. (2009) A Thermoviscoplastic Constitutive Model to Predict Elevatedtemperature Flow Behavior in a Titanium-modified Austenitic Stainless Steel, Materials Science and Engineering A, 526, pp.1-6. https://doi.org/10.1016/j.msea.2009.08.009
-
Talonen, J., Nenonen, P., Pape, G., Hanninen, H. (2005) Effect of Strain Rate on the Strain-induced
${\gamma}{\rightarrow}{\alpha}'$ -Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels, Metallurgical and Materials Transactions A, 36, pp.421-432. https://doi.org/10.1007/s11661-005-0313-y
Cited by
- Evaluation of Cryogenic Compressive Strength of Divinycell of NO 96-type LNG Insulation System vol.30, pp.5, 2016, https://doi.org/10.5574/KSOE.2016.30.5.349
- A study of feasibility of using compressed wood for LNG cargo containment system vol.40, pp.4, 2016, https://doi.org/10.5916/jkosme.2016.40.4.307