DOI QR코드

DOI QR Code

STEADY NONLINEAR HYDROMAGNETIC FLOW OVER A STRETCHING SHEET WITH VARIABLE THICKNESS AND VARIABLE SURFACE TEMPERATURE

  • Anjali Devi, S.P. (DEPARTMENT OF APPLIED MATHEMATICS, BHARATHIAR UNIVERSITY) ;
  • Prakash, M. (DEPARTMENT OF APPLIED MATHEMATICS, BHARATHIAR UNIVERSITY)
  • Received : 2014.05.28
  • Accepted : 2014.08.19
  • Published : 2014.09.25

Abstract

This work is focused on the boundary layer and heat transfer characteristics of hydromagnetic flow over a stretching sheet with variable thickness. Steady, two dimensional, nonlinear, laminar flow of an incompressible, viscous and electrically conducting fluid over a stretching sheet with variable thickness and power law velocity in the presence of variable magnetic field and variable temperature is considered. Governing equations of the problem are converted into ordinary differential equations utilizing similarity transformations. The resulting non-linear differential equations are solved numerically by utilizing Nachtsheim-Swigert shooting iterative scheme for satisfaction of asymptotic boundary conditions along with fourth order Runge-Kutta integration method. Numerical computations are carried out for various values of the physical parameters and the effects over the velocity and temperature are analyzed. Numerical values of dimensionless skin friction coefficient and non-dimensional rate of heat transfer are also obtained.

Keywords

References

  1. T. Altan, S. Oh, H. Gegel, Metal forming fundamentals and applications, American society for metals, metals park, Ohio, 1979.
  2. E.G. Fisher, Extrusion of plastics, Wiley, New York, 1976.
  3. M.V. Karwe, Y. Jaluria, Numerical simulation of thermal transport associated with a continuously moving flat sheet in materials processing, ASME J. of Heat Trans. 113(3) (1991), 612-619. https://doi.org/10.1115/1.2910609
  4. B.C. Sakiadis, Boundary layer behavior on continuous solid surface: II. Boundary-layer equations for two-dimensional and axisymmetric flow, J. of Americ. Inst. of Chem. Engg. 7(2) (1961), 221-225. https://doi.org/10.1002/aic.690070211
  5. L.J. Crane, Flow paste a stretching plane, Zeitschrift fr angewandte Mathematik und Physik (ZAMP) 21 (1970), 645-647. https://doi.org/10.1007/BF01587695
  6. W.H.H. Banks, Similarity solutions of the boundary-layer equations for a stretching wall, Journal de Mecanique Therorique et Appliquee 2(3) (1983), 375-392.
  7. E.M. Sparrow, R. D. Cess, The effect of a magnetic field on free convection heat transfer, In. J. of Heat and Mass Trans. 3 (1961), 267-274. https://doi.org/10.1016/0017-9310(61)90042-4
  8. A. Chakrabarti, A.S. Gupta, Hydromagnetic flow and heat transfer over a stretching sheet, Quart. J. of Mech. and Appl. Math. 37 (1979), 73-78.
  9. K. Vajravelu, Hydromagnetic convection at a continuous moving surface, Acta Mech. 72 (1988), 223-238. https://doi.org/10.1007/BF01178309
  10. F. Talay Akyildiz1, D. A. Siginer, K. Vajravelu, J. R. Cannon, R. A. Van Gorder, Similarity solutions of the boundary layer equations for a nonlinearly stretching sheet, Math. Methods in the Appl. Sci. 33 (2009), 601.
  11. M. M. Nandeppanavara, K. Vajravelu, M. Subhas Abel, Chiu-On Ng, Heat transfer over a nonlinearly stretching sheet with non-uniform heat source and variable wall temperature, Int. J. of Heat and Mass Trans. 54 (2011), 4960. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.009
  12. T.C. Chaim, Hydromagnetic flow over a surface with a power-law velocity, Int. J. of Engg. Sci. 33 (1995), 429-435. https://doi.org/10.1016/0020-7225(94)00066-S
  13. R. Behrouz, M. Syed Tauseef, Y. Ahmet, Solution to the MHD flow over a non-linear stretching sheet by homotopy perturbation method, SCI. CHINA Phy., Mech. & Astro. 54 (2011), 342. https://doi.org/10.1007/s11433-010-4180-1
  14. S.M. Hassan, M. Makary, Transverse vibrations of elliptical plate of linearly varying thickness with half of the boundary clamped and the rest simply supported, J. of Sound and Vibr. 45 (2003), 873-890.
  15. L.L. Lee, Boundary layer over a thin needle, Phys.of Fluids. 10 (1967), 822-828.
  16. A. Ishak, R. Nazar, I. Pop, Boundary layer flow over a continuously moving thin needle in a parallel free stream, Chinese Phys. Ltr. 24 (2007), 2895-2897. https://doi.org/10.1088/0256-307X/24/10/051
  17. Tiegang Fang, Ji Zhang, Yongfang Zhong. Boundary layer flow over a stretching sheet with variable thickness, Appl. Math. and Comput. 218 (2012), 7241-7252. https://doi.org/10.1016/j.amc.2011.12.094
  18. M. M. Khader, A. M. Megahed, Numerical solution for boundary layer flow due to a nonlinearly stretching sheet with variable thickness and slip velocity, Europ. Phys. J. Plus. 128 (2013), 100. https://doi.org/10.1140/epjp/i2013-13100-7
  19. L. G. Grubka, K. M. Bobba, Heat transfer characteristics of a continuous stretching surface with variable temperature, ASME J. of Heat Trans. 107 (1985), 248-250. https://doi.org/10.1115/1.3247387
  20. S. P. Anjali Devi, M. Thiyagarajan, Steady Nonlinear hydromagnetic flow and heat transfer over a stretching surface of variable temperature, Heat and Mass Trans. 42 (2006), 671-677. https://doi.org/10.1007/s00231-005-0640-y
  21. Nachtsheim, R. Philip, Swigert, Paul. Satisfaction of Asymptotic Boundary Conditions in Numerical Solution of Systems of Nonlinear Equations of Boundary-Layer Type. (1965), NASA TN D-3004.

Cited by

  1. Thermal radiation effects on hydromagnetic flow over a slendering stretching sheet vol.38, pp.2, 2016, https://doi.org/10.1007/s40430-015-0315-7
  2. MHD Carreau fluid slip flow over a porous stretching sheet with viscous dissipation and variable thermal conductivity vol.2017, pp.1, 2017, https://doi.org/10.1186/s13661-017-0827-4
  3. Cross diffusion and multiple slips on MHD Carreau fluid in a suspension of microorganisms over a variable thickness sheet vol.40, pp.5, 2018, https://doi.org/10.1007/s40430-018-1171-z
  4. Fractional Boundary Layer Flow and Heat Transfer Over a Stretching Sheet With Variable Thickness vol.140, pp.9, 2014, https://doi.org/10.1115/1.4039765