DOI QR코드

DOI QR Code

Investigation on Lipopolysaccharide Activated Microglia by Phosphoproteomics and Phosphoinositide Lipidomics

  • Kim, Young Jun (Department of Applied Biochemistry, Konkuk University) ;
  • Kim, Hackyoung (Department of Applied Biochemistry, Konkuk University) ;
  • Noh, Kwangmo (Nanotechnology Research Center, Konkuk University)
  • Received : 2014.07.19
  • Accepted : 2014.09.12
  • Published : 2014.09.30

Abstract

Microglia are the confined immune cells of the central nervous system (CNS). In response to injury or infection, microglia readily become activated and release proinflammatory mediators that are believed to contribute to microglia-mediated neurodegeneration. In the present study, inflammation was induced in the immortalized murine microglial cell line BV-2 by lipopolysaccharide (LPS) treatment. We firstly performed phosphoproteomics analysis and phosphoinositide lipidomics analysis with LPS activated microglia in order to compare phosphorylation patterns in active and inactive microglia and to detect the pattern of changes in phosphoinositide regulation upon activation of microglia. Mass spectrometry analysis of the phosphoproteome of the LPS treatment group compared to that of the untreated control group revealed a notable increase in the diversity of cellular phosphorylation upon LPS treatment. Additionally, a lipidomics analysis detected significant increases in the amounts of phosphoinositide species in the LPS treatment. This investigation could provide an insight for understanding molecular mechanisms underlying microglia-mediated neurodegenerative diseases.

Keywords

References

  1. Dheen, S. T.; Kaur, C.; Ling, E. A. Curr. Med. Chem. 2007, 14, 1189-1197. https://doi.org/10.2174/092986707780597961
  2. Streit, W. J.; Mrak, R. E.; Griffin, W. S. J. Neuroinflammation 2004, 1, 14. https://doi.org/10.1186/1742-2094-1-14
  3. Kim, S. U.; de Vellis, J. J. Neurosci. Res. 2005, 81, 302-313. https://doi.org/10.1002/jnr.20562
  4. Lu, D. Y.; Tang, C. H.; Liou, H. C.; Teng, C. M.; Jeng, K. C.; Kuo, S. C.; Lee, F. Y.; Fu, W. M. Br. J. Pharmacol. 2007, 151, 396-405.
  5. McGeer, P. L.; Itagaki, S.; Boyes, B. E.; McGeer, E. G. Neurology 1988, 38, 1285-1291. https://doi.org/10.1212/WNL.38.8.1285
  6. Block, M. L.; Zecca, L.; Hong, J. S. Nat. Rev. Neurosci. 2007, 8, 57-69. https://doi.org/10.1038/nrn2038
  7. Tufekci, K. U.; Genc, S.; Genc, K. Parkinsons Dis. 2011, 487450.
  8. Carson, M. J.; Thrash, J. C.; Walter, B. Clin. Neurosci. Res. 2006, 6, 237-245. https://doi.org/10.1016/j.cnr.2006.09.004
  9. Herbert, M. R. Neuroscientist 2005, 11, 417-440. https://doi.org/10.1177/0091270005278866
  10. Liu, B.; Hong, J. S. J. Pharmacol. Exp. Ther. 2003, 304, 1-7. https://doi.org/10.1124/jpet.102.035048
  11. Boulet, I.; Ralph, S.; Stanley, E.; Lock, P.; Dunn, A. R.; Green, S. P.; Phillips, W. A. Oncogene 1992, 7, 703-710.
  12. Bhat, N. R.; Zhang, P.; Lee, J. C.; Hogan, E. L. J. Neurosci. 1998, 18, 1633-1641.
  13. Chen, C. C.; Wang, J. K.; Chen, W. C.; Lin, S. B. J Biol. Chem. 1998, 273, 19424-19430. https://doi.org/10.1074/jbc.273.31.19424
  14. Henn, A.; Lund, S.; Hedtjarn, M.; Schrattenholz, A.; Porzgen, P.; Leist, M. ALTEX 2009, 26, 83-94.
  15. Han, D.; Moon, S.; Kim, Y.; Kim, J.; Jin, J. Proteomics 2013, 13, 2984-2988.
  16. Han, D.; Moon, S.; Kim, Y.; Min, H. BMC Genomics 2014, 15, 95. https://doi.org/10.1186/1471-2164-15-95
  17. Jeon, H.; Lee, S.; Lee, W. H.; Suk, K. J. Neuroimmunol. 2010, 229, 63-72. https://doi.org/10.1016/j.jneuroim.2010.07.001
  18. Wenk, M. R.; Lucast, L.; Di Paolo, G.; Romanelli, A. J.; Suchy, S. F.; Nussbaum, R. L.; Cline, G. W.; Shulman, G. I.; McMurray, W.; De Camilli, P. Nat. Biotechnol. 2003, 21, 813-817. https://doi.org/10.1038/nbt837
  19. Milne, S. B.; Ivanova, P. T.; DeCamp, D.; Hsueh, R. C.; Brown, H. A. J. Lipid Res. 2005, 46, 1796-1802. https://doi.org/10.1194/jlr.D500010-JLR200
  20. Simonsen, A.; Wurmser, A. E.; Emr, S. D.; Stenmark, H. Curr. Opin. Cell Biol. 2001, 13, 485-492. https://doi.org/10.1016/S0955-0674(00)00240-4
  21. Parker, P. J. Biochem. Soc. Trans. 2004, 32, 893-898. https://doi.org/10.1042/BST0320893
  22. Pettitt, T. R.; Dove, S. K.; Lubben, A.; Calaminus, S. D.; Wakelam, M. J. J. Lipid. Res. 2006, 47, 1588-1596. https://doi.org/10.1194/jlr.D600004-JLR200
  23. Lee, S. Y.; Kim, B.; Jeong, H. K.; Min, K. J.; Liu, T.; Park, J. Y.; Joe, E. H.; Jou, I. Neurochem. Int., 57, 600-607.
  24. Jin, R.; Yu, S.; Song, Z.; Quillin, J. W.; Deasis, D. P.; Penninger, J. M.; Nanda, A.; Granger, D. N.; Li, G. Biochem. Biophys. Res. Commun., 399, 458-464.
  25. Wisniewski, J. R.; Zougman, A.; Nagaraj, N.; Mann, M. Nat. Methods 2009, 6, 359-362. https://doi.org/10.1038/nmeth.1322
  26. Keller, A.; Nesvizhskii, A. I.; Kolker, E.; Aebersold, R. Anal. Chem. 2002, 74, 5383-5392. https://doi.org/10.1021/ac025747h