References
- H. Bass, On the ubiquity of Gorenstein rings, Math. Z 82 (1963), 8-28. https://doi.org/10.1007/BF01112819
- A. Brown, A Structure Theorem for a Class of Grade Three Perfect Ideals, J. Algebra 105 (1987), 308-327. https://doi.org/10.1016/0021-8693(87)90196-7
- D. A. Buchsbaum and D. Eisenbud, What makes the complex exact?, J. Algebra 25 (1973), 259-268. https://doi.org/10.1016/0021-8693(73)90044-6
- D. A. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions and some structure theorems for ideals of codimension 3, Amer. J. Math. 99(3) (1977), 447-485. https://doi.org/10.2307/2373926
- Eun Jeong Choi, Oh-Jin Kang, and Hyoung J. Ko, On the structure of the grade three perfect ideals of type three, Commun. Korean Math. Soc. 23(4) (2008), 487-497. https://doi.org/10.4134/CKMS.2008.23.4.487
- Yong S. Cho, Oh-Jin Kang, and Hyoung J. Ko, Perfect ideals of grade three defined by skew-symmetrizable matrices, Bull. Korean Math. Soc. 49(4) (2012), 715-736.
- Yong S. Cho, A structure theorem for a class of Gorenstein ideals of grade four, Honam Mathematical J. 36(2) (2014), 387-398. https://doi.org/10.5831/HMJ.2014.36.2.387
- E. S. Golod, A note on perfect ideals, from the collection "Algebra" (A. I. Kostrikin,Ed), Moscow State Univ. Publishing House (1980), 37-39.
- Oh-Jin Kang and Hyoung J. Ko, The structure theorem for Complete Intersections of grade 4, Algebra Collo. 12(2) (2005), 181-197. https://doi.org/10.1142/S1005386705000179
- Oh-Jin Kang, Yong S. Cho and Hyoung J. Ko, Structure theory for some classes of grade 3 perfect ideals, J. Algebra 322 (2009), 2680-2708. https://doi.org/10.1016/j.jalgebra.2009.07.021
- A. Kustin and M. Miller, Structure theory for a class of grade four Gorenstein ideals, Trans. Amer. Math. Soc. 270 (1982), 287-307. https://doi.org/10.1090/S0002-9947-1982-0642342-4
- C. Peskine and L. Szpiro, Liaison des varietes algebriques, Invent. Math. 26 (1974), 271-302 https://doi.org/10.1007/BF01425554
- R. Sanchez, A Structure Theorem for Type 3, Grade 3 Perfect Ideals, J. Algebra 123 (1989), 263-288. https://doi.org/10.1016/0021-8693(89)90047-1