DOI QR코드

DOI QR Code

Multi-Object Detection and Tracking Using Dual-Layer Particle Sampling

이중계층구조 파티클 샘플링을 사용한 다중객체 검출 및 추적

  • Jeong, Kyungwon (Dept. of Image Engineering. Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University) ;
  • Kim, Nahyun (Dept. of Image Engineering. Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University) ;
  • Lee, Seoungwon (Dept. of Image Engineering. Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University) ;
  • Paik, Joonki (Dept. of Image Engineering. Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University)
  • 정경원 (중앙대학교 첨단영상대학원) ;
  • 김나현 (중앙대학교 첨단영상대학원) ;
  • 이승원 (중앙대학교 첨단영상대학원) ;
  • 백준기 (중앙대학교 첨단영상대학원)
  • Received : 2014.06.09
  • Accepted : 2014.09.03
  • Published : 2014.09.25

Abstract

In this paper, we present a novel method for simultaneous detection and tracking of multiple objects using dual-layer particle filtering. The proposed dual-layer particle sampling (DLPS) algorithm consists of parent-particles (PP) in the first layer for detecting multiple objects and child-particles (CP) in the second layer for tracking objects. In the first layer, PPs detect persons using a classifier trained by the intersection kernel support vector machine (IKSVM) at each particle under a randomly selected scale. If a certain PP detects a person, it generates CPs, and makes an object model in the detected object region for tracking the detected object. While PPs that have detected objects generate CPs for tracking, the rest of PPs still move for detecting objects. Experimental results show that the proposed method can automatically detect and track multiple objects, and efficiently reduce the processing time using the sampled particles based on motion distribution in video sequences.

본 논문에서는 다중객체 검출과 동시에 추적을 수행하는 이중계층구조의 파티클 샘플링을 제안한다. 제안된 방법은 다중 객체 검출을 위한 상위 계층 파티클 샘플링과 검출된 객체의 추적을 위한 하위 계층 파티클 샘플링으로 구성된다. 상위 계층에서는 빠른 객체 검출을 위해 슬라이딩 윈도우 대신 움직임 추정 기반의 부모 파티클 (parent particles; PP) 윈도우를 사용하여, 이동 객체 주위로 리샘플링된 파티클을 통해 객체를 검출한다. 하위 계층에서는 상위 계층에서 검출한 객체의 객체영역에 자식 파티클 (child particles; CP)을 생성하여 해당 객체를 추적한다. 실험결과를 통해 비디오 시스템에서 기존 객체 검출 방법보다 빠른 검출이 가능하고, 다중 객체를 효과적으로 추적할 수 있음을 확인하였다.

Keywords

References

  1. S. Lee, T. Kim, J. Yoo, and J. Paik, "Abnormal Behavior Detection Based on Adaptive BackgroundGeneration for Intelligent Video Analysis", Journal of The Institute of Electronics Engineers of Korea, vol. 48SP, no. 1, pp. 111-121, January 2011.
  2. S. Moon, and S. Shin, "Implementation of Inteligent Image Surveilance System based Contex", Journal of The Institute of Electronics Engineers of Korea, vol. 47SP, no. 3, pp. 11-22, May 2010.
  3. J. Kim, D. Yeom, and Y. Joo, "Fast and robust algorithm of tracking multiple moving objects for intelligent video surveillance systems," IEEE Trans. Consumer Electronics, vol. 57, no. 3, pp. 1165-1170, August 2011. https://doi.org/10.1109/TCE.2011.6018870
  4. Y. Chai, S. Shin, K. Chang, and T. Kim, "Real-time user interface using particle filter with integral histogram," IEEE Trans. Consumer Electronics, vol. 56, no. 2, pp. 510-515, May 2010. https://doi.org/10.1109/TCE.2010.5505963
  5. Y. Rui and Y. Chen, "Better proposal distributions: object tracking using unscented particle filter,"Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 786-793, 2001.
  6. H. Grabner, M. Grabner, and H. Bischof, "Real-time tracking via on-line boosting," Proc. British Machine Vision Conference, vol. 1, pp. 47-56, 2006.
  7. Z. Chen "Bayesian filtering: From Kalman Filters to particle filters, and beyond," Technical Report McMasters University, Hamilton, 2003.
  8. K. Okuma, A. Taleghani, N. Freitas, J. Little, and D. Lowe, "A boosted particle filter: multitarget detection and tracking", Proc. European Conference on Computer Vision, vol. 3021, pp. 28-39, 2004.
  9. G. Gualdi, A. Prati, R. Cucchiara "Multi-stage particle windows for fast and accurate object detection," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.34, no. 8 , pp. 1589-1604, August 2012. https://doi.org/10.1109/TPAMI.2011.247
  10. P. Peerez, C. Hue, J. Vermaak, and M. Gangnet, "Color based probabilistic tracking," Proc. European Conference on Computer Vision, pp. 661-675, 2002.
  11. S. Maji, A. Berg, and J. Malik, "Classification using intersection kernel support vector machines is efficient," Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1-8, 2008.
  12. B. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," Proc. DARPA Image Understanding Workshop, pp. 121-130, 1981.