DOI QR코드

DOI QR Code

컬러 디모자이킹이 결합된 저 복잡도의 실시간 배럴 왜곡 보정 프로세서

A Low-Complexity Real-Time Barrel Distortion Correction Processor Combined with Color Demosaicking

  • 정희성 (한국항공대학교 항공전자및정보통신공학부) ;
  • 박윤주 (한국항공대학교 항공전자및정보통신공학부) ;
  • 김태환 (한국항공대학교 항공전자및정보통신공학부)
  • Jeong, Hui-Seong (School of electronics, Telecommunication and computer engineering, Korea Aerospace University) ;
  • Park, Yun-Ju (School of electronics, Telecommunication and computer engineering, Korea Aerospace University) ;
  • Kim, Tae-Hwan (School of electronics, Telecommunication and computer engineering, Korea Aerospace University)
  • 투고 : 2014.03.13
  • 심사 : 2014.08.26
  • 발행 : 2014.09.25

초록

본 논문에서는 컬러 영상을 실시간 신호 처리 과정을 통해 보정하기 위한 낮은 복잡도의 배럴 왜곡 보정 프로세서의 구조를 제시하고, 이를 구현한 결과를 보인다. 제안하는 배럴 왜곡 보정 프로세서는 컬러 디모자이킹과 배럴 왜곡 보정 과정의 두 보간과정을 결합하여 하드웨어 복잡도를 낮추었다. 또한 배럴 왜곡 보정 과정의 공간적 지역성을 이용한 메모리 인터페이스를 설계하여 한 픽셀을 보정하는데 요구되는 메모리 대역폭을 크게 감소시켰다. 설계된 보정 프로세서는 $0.11-{\mu}m$ CMOS 공정을 사용하여 35K의 논리 게이트로 구현되었고, $2048{\times}2048$ 크기의 컬러 영상을 최대 606 MHz의 동작 주파수로 150 Mpixels/s의 속도로 보정할 수 있으며, 요구되는 메모리 대역폭은 1 read/correction이다.

This paper presents a low-complexity barrel distortion correction processor for wide-angle cameras. The proposed processor performs the barrel distortion correction jointly with the color demosaicking, so that the hardware complexity can be reduced significantly. In addition, to reduce the required memory bandwidth, an efficient memory interface is proposed by utilizing the spatial locality of the memory access in the correction process. The proposed processor is implemented with 35K logic gates in a $0.11-{\mu}m$ CMOS process and its correction speed is 150 Mpixels/s at the operating frequency of 606MHz, where the supported frame size is $2048{\times}2048$ and the required memory bandwidth is 1 read/cycle.

키워드

참고문헌

  1. S. Y. Kim, I. H. Yoon, D. G. Kim, and J. K. Paik, "Calibration of fisheye lens images using a spiral pattern and compensation for geometric distortion," J. of lEEK SP, vol. 49, no. 4, pp. 16-22, Jul. 2012.
  2. V. K. Asari, S. Kumar, and D. Radhakrishnan, "A new approach for nonlinear distortion correction in endoscopic images based on least squares estimation," IEEE Trans. Med. Imaging, vol. 18, no. 4, pp. 345-354, Apr. 1999. https://doi.org/10.1109/42.768843
  3. H. T. Ngo and V. K. Asari, "A pipelined architecture for real-time correction of barrel distortion in wide-angle camera images," IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 3, pp. 436-444, Mar. 2005. https://doi.org/10.1109/TCSVT.2004.842609
  4. P. Y. Chen, C. C. Huang, Y. H. Shiau, and Y. T. Chen, "A VLSI implementation of barrel distortion correction for wide-angle camera images," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 1, pp. 51-55, Jan. 2009. https://doi.org/10.1109/TCSII.2008.2010165
  5. S. Chen, H. Huang, and C. Luo, "Time multiplexed VLSI architecture for real-time barrel distortion correction in video-endoscopic images," IEEE Trans. Circuits Syst. Video Technol., vol. 21, no. 11, pp. 1612-1621, Nov. 2011. https://doi.org/10.1109/TCSVT.2011.2129850
  6. H. S. Jeong, W. T. Kim, G. H. Lee, and T. H. Kim, "Design and implementation of a low-complexity real-time barrel distortion corrector for wide-angle cameras," J. of lEEK SD, vol. 50, no. 6, pp. 131-137, Jun. 2013. https://doi.org/10.5573/ieek.2013.50.6.131
  7. W. T. Kim, H. S. Jeong, G. H. Lee, and T. H. Kim, "A high-speed and low-complexity lens distortion correction processor for wide-angle cameras," in Proc. ASP-DAC, pp. 39-40, Suntec, Singapore, Jan. 2014.
  8. B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R.M. Mersereau, and R.W. Schafer, "Demosaicking: color filter array interpolation," IEEE Signal Process. Mag., vol. 22, no. 1, pp. 44-54, Jan. 2005. https://doi.org/10.1109/MSP.2005.1407714
  9. B. E. Bayer, "Color imaging array," U.S. Patent No. 3 971 065, Jul. 1976.
  10. C. S. Wallace, "A suggestion for a fast multiplier," IEEE Trans. Electron. Comput., vol. EC-13, no. 1, pp. 14-17, Feb. 1964. https://doi.org/10.1109/PGEC.1964.263830
  11. P. M. Hagelin and O. Solgaard, "Optical raster-scanning displays based on surface-micromachined polysilicon mirrors," IEEE J. Sel. Topics in Quantum Elect., vol. 5, no. 1, pp. 67-74, Feb. 1999. https://doi.org/10.1109/2944.748107