References
- Douglas CW, Mitchinson C. 1997. Enzymes involved in the processing of starch to sugars. Trends Biotechnol. 15: 349-352. https://doi.org/10.1016/S0167-7799(97)01082-2
- Fuwa H. 1954. A n ew m eth od f or m icrodetermination of amylase activity by the use of amylose as the substrate. J. Biochem. 41: 583-603 https://doi.org/10.1093/oxfordjournals.jbchem.a126476
- Haki G, Rakshit S. 2003. Developments in industrially important thermostable enzymes: a review. Bioresour. Technol. 89: 17-34. https://doi.org/10.1016/S0960-8524(03)00033-6
- Hwang KY, Song HK, Chang C, Lee J, Lee S, Kim K, et al. 1997. Crystal structure of thermostable alpha-amylase from Bacillus licheniformis refined at 1.7 A resolution. Mol. Cells 7: 251-258.
- Li H, Robertson AD, Jensen JH. 2004. The determinants of carboxyl pKa values in turkey ovomucoid third domain. Proteins 55: 689-704. https://doi.org/10.1002/prot.20032
-
Janeek S, Svensson B, MacGregor EA. 2014.
$\alpha$ -Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol. Life Sci. 71: 1149-1170. https://doi.org/10.1007/s00018-013-1388-z -
Jones A, Lamsa M, Frandsen TP, Spendler T, Harris P, Sloma A, et al. 2008. Directed evolution of a maltogenic
$\alpha$ - amylase from Bacillus sp. TS-25. J. Biotechnol. 134: 325-333. https://doi.org/10.1016/j.jbiotec.2008.01.016 -
Machius M, Declerck N, Huber R, Wiegand G. 1998. Activation of Bacillus licheniformis
${alpha}$ -amylase through a disorder$\rightarrow$ order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6: 281-292. https://doi.org/10.1016/S0969-2126(98)00032-X - Matsuura Y. 2002. A possible mechanism of catalysis involving three essential residues in the enzymes of alphaamylase family. Biol. Bratisava 57: 21-28.
-
Nielsen JE, Beier L, Otzen D, Borchert TV, Frantzen HB, Andersen KV, Svendsen A. 1999. Electrostatics in the active site of an
$\alpha$ -amylase. Eur. J. Biochem. 264: 816-824. -
Priyadharshini R, Manoharan S, Hemalatha D, Gunasekaran P. 2010. Repeated random mutagenesis of
$\alpha$ -amylase from Bacillus licheniformis for improved pH performance. J. Microbiol. Biotechnol. 20: 1696-1701. -
Qin Y, Fang Z, Pan F, Zhao Y, Li H, Wu H, Meng X. 2012. Significance of Tyr302, His235 and Asp194 in the
$\alpha$ -amylase from Bacillus licheniformis. Biotechnol. Lett. 34: 895-899. https://doi.org/10.1007/s10529-011-0843-x -
Rivera MH, Lopez-Munguía A, Soberon X, Saab-Rincon G. 2003.
$\alpha$ -Amylase from Bacillus licheniformis mutants near to the catalytic site: effects on hydrolytic and transglycosylation activity. Protein Eng. 16: 505-514. https://doi.org/10.1093/protein/gzg060 -
Sajedi RH, Taghdir M, Naderi-Manesh H. 2007. Nucleotide sequence, structural investigation and homology modeling studies of a
$Ca^{2+}$ -independent$\alpha$ -amylase with acidic pHprofile. J. Biochem. Mol. Biol. 40: 315-324. https://doi.org/10.5483/BMBRep.2007.40.3.315 -
Shaw A, Bott R, Day AG. 1999. Protein engineering of
$\alpha$ - amylase for low pH performance. Curr. Opin. Biotechnol. 10: 349-352. https://doi.org/10.1016/S0958-1669(99)80063-9 - Sinnott ML. 1990. Catalytic mechanism of enzymic glycosyl transfer. Chem. Rev. 90: 1171-1202. https://doi.org/10.1021/cr00105a006
- Tiwari MK, Singh RK, Singh R, Jeya M, Zhao H, Lee JK. 2012. Role of conserved glycine in zinc-dependent medium chain dehydrogenase/reductase superfamily. J. Biol. Chem. 287: 19429-19439. https://doi.org/10.1074/jbc.M111.335752
-
Wang Y, Feng S, Zhan T. 2013. Improving catalytic efficiency of endo-
$\beta$ -1,4-xylanase from Geobacillus stearothermophilus by directed evolution and H179 saturation mutagenesis. J. Biotechnol. 168: 341-347. https://doi.org/10.1016/j.jbiotec.2013.09.014 - Wind RD, Uitdehaag JC, Buitelaar RM, Dijkstra BW, Dijkhuizen L. 1998. Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. J. Biol. Chem. 273: 5771-5779. https://doi.org/10.1074/jbc.273.10.5771
-
Yang HQ, Liu L, Shin HD, Chen RR, Li JH, Du GC, Chen J. 2012. Structure-based engineering of histidine residues in the catalytic domain of
$\alpha$ -amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions. J. Biotechnol. 1: 59-66. https://doi.org/10.5114/bta.2012.46569
Cited by
- Long-term preservation of α-amylase activity in highly concentrated aqueous solutions of imidazolium ionic liquid vol.7, pp.2, 2014, https://doi.org/10.1515/gps-2017-0016
- Long-term preservation of α-amylase activity in highly concentrated aqueous solutions of imidazolium ionic liquid vol.7, pp.2, 2014, https://doi.org/10.1515/gps-2017-0016
- The tale of a versatile enzyme: Alpha-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes vol.250, pp.None, 2014, https://doi.org/10.1016/j.chemosphere.2020.126202
- Simultaneously Improved Thermostability and Hydrolytic Pattern of Alpha-Amylase by Engineering Central Beta Strands of TIM Barrel vol.192, pp.1, 2014, https://doi.org/10.1007/s12010-020-03308-8