References
- Ahn JH, Hong IP, Bok JI, Kim BY, Song J, Weon HY. 2012. Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. J. Microbiol. 50: 735-745. https://doi.org/10.1007/s12275-012-2188-0
- Ben Ami E, Yuval B, Jurkevitch E. 2010. Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J. 4: 28-37. https://doi.org/10.1038/ismej.2009.82
- Broderick NA, Lemaitre B. 2012. Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3: 307-321. https://doi.org/10.4161/gmic.19896
- Brune A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12: 168-180. https://doi.org/10.1038/nrmicro3182
- Cariveau DP, Elijah Powell J, Koch H, Winfree R, Moran NA. 2014. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J. DOI: 10.1038/ismej.2014.68.
- Carle P, Whitcomb RF, Hackett KJ, Tully JG, Rose DL, Bove JM, et al. 1997. Spiroplasma diabroticae sp. nov., from the southern corn rootworm beetle, Diabrotica undecimpunctata (Coleoptera: Chrysomelidae). Int. J. Syst. Bacteriol. 47: 78-80. https://doi.org/10.1099/00207713-47-1-78
- Ceja-Navarro JA, Nguyen NH, Karaoz U, Gross SR, Herman DJ, Andersen GL, et al. 2014. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. ISME J. 8: 6-18. https://doi.org/10.1038/ismej.2013.134
- Chang TH, Lo WS, Ku C, Chen LL, Kuo CH. 2014. Molecular evolution of the substrate utilization strategies and putative virulence factors in mosquito-associated Spiroplasma species. Genome Biol. Evol. 6: 500-509. https://doi.org/10.1093/gbe/evu033
- Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42: D633- D642. https://doi.org/10.1093/nar/gkt1244
- Corby-Harris V, Maes P, Anderson KE. 2014. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS One 9: e95056. https://doi.org/10.1371/journal.pone.0095056
- Dillon RJ, Dillon VM. 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49: 71-92. https://doi.org/10.1146/annurev.ento.49.061802.123416
- Hackett KJ, Whitcomb RF, French FE, Tully JG, Gasparich GE, Rose DL, et al. 1996. Spiroplasma corruscae sp. nov., from a firefly beetle (Coleoptera: Lampyridae) and tabanid flies (Diptera: Tabanidae). Int. J. Syst. Bacteriol. 46: 947-950. https://doi.org/10.1099/00207713-46-4-947
- Hu Y, ukasik P, Moreau CS, Russell JA. 2014. Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability. Mol. Ecol. 23: 1284-1300. https://doi.org/10.1111/mec.12607
- Huang XF, Bakker MG, Judd TM, Reardon KF, Vivanco JM. 2013. Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates. Microb. Ecol. 65: 531-536. https://doi.org/10.1007/s00248-013-0219-y
- Hurst GD, Jiggins FM. 2000. Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerg. Infect. Dis. 6: 329-336. https://doi.org/10.3201/eid0604.000402
- Ishak HD, Plowes R, Sen R, Kellner K, Meyer E, Estrada DA, et al. 2011. Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. Microb. Ecol. 61: 821-831. https://doi.org/10.1007/s00248-010-9793-4
- Jung J, Yeom J, Kim J, Han J, Lim HS, Park H, et al. 2011. Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. Res. Microbiol. 162: 1018-1026. https://doi.org/10.1016/j.resmic.2011.07.007
- Jung J, Seo H, Lee SH, Jeon CO, Park W. 2013. The effect of toxic malachite green on the bacterial community in Antarctic soil and the physiology of malachite green-degrading Pseudomonas sp. MGO. Appl. Microbiol. Biotechnol. 97: 4511- 4521. https://doi.org/10.1007/s00253-012-4669-9
- Kautz S, Rubin BE, Russell JA, Moreau CS. 2013. Surveying the microbiome of ants: comparing 454 pyrosequencing with traditional methods to uncover bacterial diversity. Appl. Environ. Microbiol. 79: 525-534. https://doi.org/10.1128/AEM.03107-12
- Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721. https://doi.org/10.1099/ijs.0.038075-0
- Kim JK, Kim NH, Jang HA, Kikuchi Y, Kim CH, Fukatsu T, Lee BL. 2013. Specific midgut region controlling the symbiont population in an insect-microbe gut symbiotic association. Appl. Environ. Microbiol. 79: 7229-7233. https://doi.org/10.1128/AEM.02152-13
- Köhler T, Dietrich C, Scheffrahn RH, Brune A. 2012. Highresolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in woodfeeding higher termites (Nasutitermes spp.). Appl. Environ. Microbiol. 78: 4691-4701. https://doi.org/10.1128/AEM.00683-12
- Lizé A, McKay R, Lewis Z. 2013. Gut microbiota and kin recognition. Trends Ecol. Evol. 28: 325-326. https://doi.org/10.1016/j.tree.2012.10.013
- Mateos M, Castrezana SJ, Nankivell BJ, Estes AM, Markow TA, Moran NA. 2006. Heritable endosymbionts of Drosophila. Genetics 174: 363-376. https://doi.org/10.1534/genetics.106.058818
- Martínez-Rodríguez P, Herández-Pérez M, Bella JL. 2013. Detection of Spiroplasma and Wolbachia in the bacterial gonad community of Chorthippus parallelus. Microb. Ecol. 66: 211-223. https://doi.org/10.1007/s00248-013-0226-z
- McFrederick QS, Mueller UG, James RR. 2014. Interactions between fungi and bacteria influence microbial community structure in the Megachile rotundata larval gut. Proc. Biol. Sci. 281: 20132653. https://doi.org/10.1098/rspb.2013.2653
- Noh JY, Patnaik BB, Tindwa H, Seo GW, Kim DH, Patnaik HH, et al. 2014. Genomic organization, sequence characterization and expression analysis of Tenebrio molitor apolipophorin-III in response to an intracellular pathogen, Listeria monocytogenes. Gene 534: 204-217. https://doi.org/10.1016/j.gene.2013.10.058
- Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504. https://doi.org/10.1101/gr.1239303
- Russell JA, Funaro CF, Giraldo YM, Goldman-Huertas B, Suh D, Kronauer DJ, et al. 2012. A veritable menagerie of heritable bacteria from ants, butterflies, and beyond: broad molecular surveys and a systematic review. PLoS One 7: e51027. https://doi.org/10.1371/journal.pone.0051027
- Russell CW, Bouvaine S, Newell PD, Douglas AE. 2013. Shared metabolic pathways in a coevolved insect-bacterial symbiosis. Appl. Environ. Microbiol. 79: 6117-6123. https://doi.org/10.1128/AEM.01543-13
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
Cited by
- Investigation of Gut-Associated Bacteria inTenebrio molitor(Coleoptera: Tenebrionidae) Larvae Using Culture-Dependent and DGGE Methods vol.108, pp.5, 2014, https://doi.org/10.1093/aesa/sav079
- Xenobiotics: Interaction with the Intestinal Microflora vol.56, pp.2, 2015, https://doi.org/10.1093/ilar/ilv018
- Safety aspects of the production of foods and food ingredients from insects vol.61, pp.6, 2017, https://doi.org/10.1002/mnfr.201600520
- Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed vol.72, pp.9, 2014, https://doi.org/10.1515/znc-2017-0033
- A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals vol.102, pp.5, 2018, https://doi.org/10.1007/s00253-018-8788-9
- Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect vol.87, pp.2, 2014, https://doi.org/10.1111/1365-2656.12661
- Production and recovery of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) from biodiesel liquid waste (BLW) vol.58, pp.11, 2014, https://doi.org/10.1002/jobm.201800279
- Immune Defenses of a Beneficial Pest: The Mealworm Beetle, Tenebrio molitor vol.10, pp.None, 2014, https://doi.org/10.3389/fphys.2019.00138
- Comparison of Six Commercial Meat Starter Cultures for the Fermentation of Yellow Mealworm (Tenebrio molitor) Paste vol.7, pp.11, 2019, https://doi.org/10.3390/microorganisms7110540
- The yellow mealworm (Tenebrio molitor) genome: a resource for the emerging insects as food and feed industry vol.6, pp.5, 2014, https://doi.org/10.3920/jiff2019.0057
- Bacterial community profile after the lethal infection of Steinernema-Xenorhabdus pairs into soil-reared Tenebrio molitor larvae vol.96, pp.2, 2014, https://doi.org/10.1093/femsec/fiaa009
- Impact of heat treatment on microbiota of black soldier fly larvae reared on soybean curd residues vol.7, pp.3, 2014, https://doi.org/10.3920/jiff2020.0108
- Genetic and genomic selection in insects as food and feed vol.7, pp.5, 2014, https://doi.org/10.3920/jiff2020.0097
- Probiotic properties of an indigenous Pediococcus pentosaceus strain on Tenebrio molitor larval growth and survival vol.7, pp.6, 2014, https://doi.org/10.3920/jiff2020.0156