DOI QR코드

DOI QR Code

Lipoteichoic Acid from Lactobacillus plantarum Inhibits the Expression of Platelet-Activating Factor Receptor Induced by Staphylococcus aureus Lipoteichoic Acid or Escherichia coli Lipopolysaccharide in Human Monocyte-Like Cells

  • Kim, Hangeun (School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Jung, Bong Jun (School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Jeong, Jihye (School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Chun, Honam (Danone Pulmuone Co., Ltd. R&D Center, CJ Food Safety Hall, Korea University) ;
  • Chung, Dae Kyun (School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
  • Received : 2014.03.07
  • Accepted : 2014.04.26
  • Published : 2014.08.28

Abstract

Platelet-activating factor receptor (PAFR) plays an important role in bacterial infection and inflammation. We examined the effect of the bacterial cell wall components lipopolysaccharide (LPS) and lipoteichoic acid (LTA) from Lactobacillus plantarum (pLTA) and Staphylococcus aureus (aLTA) on PAFR expression in THP-1, a monocyte-like cell line. LPS and aLTA, but not pLTA, significantly increased PAFR expression, whereas priming with pLTA inhibited LPS-mediated or aLTA-mediated PAFR expression. Expression of Toll-like receptor (TLR) 2 and 4, and CD14 increased with LPS and aLTA treatments, but was inhibited by pLTA pretreatment. Neutralizing antibodies against TLR2, TLR4, and CD14 showed that these receptors were important in LPS-mediated or aLTA-mediated PAFR expression. PAFR expression is mainly regulated by the nuclear factor kappa B signaling pathway. Blocking PAF binding to PAFR using a PAFR inhibitor indicated that LPS-mediated or aLTA-mediated PAF expression affected TNF-${\alpha}$ production. In the mouse small intestine, pLTA inhibited PAFR, TLR2, and TLR4 expression that was induced by heat-labile toxin. Our data suggested that pLTA has an anti-inflammatory effect by inhibiting the expression of PAFR that was induced by pathogenic ligands.

Keywords

References

  1. Behr T, Fischer W, Peter-Katalinic J, Egge H. 1992. The structure of pneumococcal lipoteichoic acid: improved preparation, chemical and mass spectrometric studies. Eur. J. Biochem. 207: 1063-1075. https://doi.org/10.1111/j.1432-1033.1992.tb17143.x
  2. Bhakdi S, Klonisch T, Nuber P, Fischer W. 1991. Stimulation of monokine production by lipoteichoic acids. Infect. Immunol. 59: 4614-4620.
  3. Castor MG, Rezende BM, Resende CB, Bernardes PT, Cisalpino D, Vieira AT, et al. 2012. Platelet-activating factor receptor plays a role in the pathogenesis of graft-versushost disease by regulating leukocyte recruitment, tissue injury, and lethality. J. Leukoc. Biol. 91: 629-639. https://doi.org/10.1189/jlb.1111561
  4. Dagenais P, Thivierge M, Stankova J, Rola-Pleszczynski M. 1997. Modulation of platelet-activating factor receptor (PAFR) gene expression via NF kappa B in MonoMac-1 cells. Inflamm. Res. 46 (Suppl 2): S161-S162. https://doi.org/10.1007/s000110050158
  5. Deininger S, Stadelmaier A, von Aulock S, Morath S, Schmidt RR, Hartung T. 2003. Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J. Immunol. 170: 4134-4138. https://doi.org/10.4049/jimmunol.170.8.4134
  6. Fischer W, Mannsfeld T, Hagen G. 1990. On the basic structure of poly (glycerophosphate) lipoteichoic acids. Biochem. Cell Biol. 68: 33-43. https://doi.org/10.1139/o90-005
  7. Fischer W. 1998. Physiology of lipoteichoic acids in bacteria. Adv. Microb. Physiol. 29: 233-302.
  8. Frostegård J, Huang YH, Rönnelid J, Schäfer-Elinder L. 1997. Platelet-activating factor and oxidized LDL induce immune activation by a common mechanism. Arterioscler. Thromb. Vasc. Biol. 17: 963-968. https://doi.org/10.1161/01.ATV.17.5.963
  9. Georgieva RN, IIiev IN, Chipeva VA, Dimitonova SP, Samelis J, Danova ST. 2008. Identification and in vitro characterization of Lactobacillus plantarum strains from artisanal Bulgarian white brined cheeses. J. Basic Microbiol. 48: 234-244. https://doi.org/10.1002/jobm.200700355
  10. Ginsburg I. 2002. Role of lipoteichoic acid in infection and inflammation. Lancet Infect. 2: 171-179. https://doi.org/10.1016/S1473-3099(02)00226-8
  11. Greengerg JW, Fischer W, Joiner KA. 1996. Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect. Immunol. 64: 3318-3325.
  12. Grigg J. 2012. The platelet activating factor receptor: a new anti-infective target in respiratory disease? Thorax 67: 840-841. https://doi.org/10.1136/thoraxjnl-2012-202206
  13. Han SH, Kim JH, Seo HS, Martin MH, Chung GH, Michalek SM, Nahm MH. 2006. Lipoteichoic acid-induced nitric oxide production depends on the activation of platelet-activating factor receptor and Jak2. J. Immunol. 176: 573-579. https://doi.org/10.4049/jimmunol.176.1.573
  14. Han SH, Kim JK, Martin M, Michalek SM, Nahm MH. 2003. Pneumococcal lipoteichoic acid (LTA) is not as potent as Staphylococcal LTA in stimulating Toll-like receptor 2. Infect. Immunol. 71: 5541-5548. https://doi.org/10.1128/IAI.71.10.5541-5548.2003
  15. Hosoki K, Nakamura A, Nagao M, Hiraguchi Y, Tanida H, Tokuda R, et al. 2012. Staphylococcus aureus directly activates eosinophils via platelet-activating factor receptor. J. Leukoc. Biol. 92: 333-341. https://doi.org/10.1189/jlb.0112009
  16. Hourton D, Delerive P, Stankova J, Staels B, Chapman MJ, Ninio E. 2001. Oxidized low-density lipoprotein and peroxisome-proliferator-activated receptor alpha down-regulate platelet-activating-factor receptor expression in human macrophages. Biochem. J. 354: 225-232. https://doi.org/10.1042/0264-6021:3540225
  17. Iovino F, Brouwer MC, van de Beek D, Molema G, Bijlsma JJ. 2013. Signalling or binding: the role of the plateletactivating factor receptor in invasive pneumococcal disease. Cell Microbiol. 15: 870-881. https://doi.org/10.1111/cmi.12129
  18. Jang KS, Baik JE, Han SH, Chung DK, Kim BG. 2011. Multispectrometric analyses of lipoteichoic acids isolated from Lactobacillus plantarum. Biochem. Biophys. Res. Commun. 407: 823-830. https://doi.org/10.1016/j.bbrc.2011.03.107
  19. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, et al. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130: 1071-1082. https://doi.org/10.1016/j.cell.2007.09.008
  20. Kim HG, Gim MG, Kim JY, Hwang HJ, Ham MS, Lee JM, et al. 2007. Lipoteichoic acid from Lactobacillus plantarum elicits both the production of interleukin-23p19 and suppression of pathogen-mediated interleukin-10 in THP-1 cells. FEMS Immunol. Med. Microbiol. 49: 205-214. https://doi.org/10.1111/j.1574-695X.2006.00175.x
  21. Kim HG, Kim NR, Gim MG, Lee JM, Lee SY, Ko MY, et al. 2008. Lipoteichoic acid isolated from Lactobacillus plantarum inhibits lipopolysaccharide-induced TNF-alpha production in THP-1 cells and endotoxin shock in mice. J. Immunol. 180: 2553-2561. https://doi.org/10.4049/jimmunol.180.4.2553
  22. Kim HG, Lee SY, Kim NR, Ko MY, Lee JM, Yi TH, et al. 2008. Inhibitory effects of Lactobacillus plantarum lipoteichoic acid (LTA) on Staphylococcus aureus LTA-induced tumor necrosis factor-alpha production. J. Microbiol. Biotechnol. 18: 1191-1196.
  23. Knapp S, von Aulock S, Leendertse M, Haslinger I, Draing C, Golenbock DT, van der Poll T. 2008. Lipoteichoic acidinduced lung inflammation depends on TLR2 and the concerted action of TLR4 and the platelet-activating factor receptor. J. Immunol. 180: 3478-3484. https://doi.org/10.4049/jimmunol.180.5.3478
  24. Koltai M, Hosford D, Guinot P, Esanu A, Braquet P. 1991. Platelet activating factor (PAF). A review of its effects, antagonists and possible future clinical implications (Part I). Drugs 42: 9-29. https://doi.org/10.2165/00003495-199142010-00002
  25. Lacerda-Queiroz N, Rachid MA, Teixeira MM, Teixeira AL. 2013. The role of platelet-activating factor receptor (PAFR) in lung pathology during experimental malaria. Int. J. Parasitol. 43: 11-15. https://doi.org/10.1016/j.ijpara.2012.11.008
  26. Lacerda-Queiroz N, Rodrigues DH, Vilela MC, Rachid MA, Soriani FM, Sousa LP, et al. 2012. Platelet-activating factor receptor is essential for the development of experimental cerebral malaria. Am. J. Pathol. 180: 246-255. https://doi.org/10.1016/j.ajpath.2011.09.038
  27. Melnikova VO, Villares GJ, Bar-Eli M. 2008. Emerging roles of PAR-1 and PAFR in melanoma metastasis. Cancer Microenviron. 1: 103-111. https://doi.org/10.1007/s12307-008-0002-7
  28. Mutoh H, Kume K, Sato S, Kato S, Shimizu T. 1994. Positive and negative regulations of human platelet-activating factor receptor transcript 2 (tissue-type) by estrogen and TGF-beta 1. Biochem. Biophys. Res. Commun. 205: 1130-1136. https://doi.org/10.1006/bbrc.1994.2783
  29. Schroder NWJ, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, et al. 2003. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharidebinding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem. 278: 15587-15594. https://doi.org/10.1074/jbc.M212829200
  30. Seo HS, Michalek SM, Nahm MH. 2008. Lipoteichoic acid is important in innate immune responses to gram-positive bacteria. Infect. Immunol. 76: 206-213. https://doi.org/10.1128/IAI.01140-07
  31. Shimizu T, Mutoh H, Kato S. 1996. Platelet-activating factor receptor. Gene structure and tissue-specific regulation. Adv. Exp. Med. Biol. 416: 79-84. https://doi.org/10.1007/978-1-4899-0179-8_14
  32. Takeuchi O, Hoshino K, Akira S. 2000. Cutting edge: TLR2- deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol. 165: 5392-5396. https://doi.org/10.4049/jimmunol.165.10.5392

Cited by

  1. Influence of osmotic stress on the profile and gene expression of surface layer proteins in Lactobacillus acidophilus ATCC 4356 vol.100, pp.19, 2014, https://doi.org/10.1007/s00253-016-7698-y
  2. Toll-like receptor 2-mediated MAPKs and NF-κsB activation requires the GNAO1-dependent pathway in human mast cells vol.8, pp.9, 2016, https://doi.org/10.1039/c6ib00097e
  3. In vitroandin vivodownregulation of C3 by lipoteichoic acid isolated fromLactobacillus plantarumK8 suppressed cytokine-mediated complement system activation vol.363, pp.14, 2014, https://doi.org/10.1093/femsle/fnw140
  4. Differential protection by cell wall components of Lactobacillus amylovorus DSM 16698 T against alterations of membrane barrier and NF-kB activation induced by enterotoxigenic F4 vol.16, pp.None, 2016, https://doi.org/10.1186/s12866-016-0847-8
  5. Innate immune responses induced by lipopolysaccharide and lipoteichoic acid in primary goat mammary epithelial cells vol.8, pp.1, 2014, https://doi.org/10.1186/s40104-017-0162-8
  6. Lipoteichoic Acid Isolated from Lactobacillus plantarum Maintains Inflammatory Homeostasis through Regulation of Th1- and Th2- Induced Cytokines vol.29, pp.1, 2014, https://doi.org/10.4014/jmb.1809.09001
  7. Porphyromonas gingivalis enhances pneumococcal adhesion to human alveolar epithelial cells by increasing expression of host platelet‐activating factor receptor vol.595, pp.11, 2014, https://doi.org/10.1002/1873-3468.14084