DOI QR코드

DOI QR Code

Isolation and Characterization of Purple Non-Sulfur Bacteria, Afifella marina, Producing Large Amount of Carotenoids from Mangrove Microhabitats

  • Received : 2013.08.23
  • Accepted : 2014.04.19
  • Published : 2014.08.28

Abstract

This study determined the effect of light intensity and photoperiod on the dry cell weight and total amount of carotenoids in four isolates of purple non-sulfur bacteria obtained from shaded and exposed microhabitats of a mangrove ecosystem in Kota Kinabalu, Sabah, Malaysia. The initial isolation of the bacteria was carried out using synthetic 112 medium under anaerobic conditions (2.5 klx) at $30{\pm}2^{\circ}C$. On the basis of colony appearance, cell morphology, gram staining, motility test, and 16S rRNA gene sequencing analyses, all four bacteria were identified as Afifella marina. One of the bacterial isolates, designated as Af. marina strain ME, which was extracted from an exposed mud habitat within the mangrove ecosystem, showed the highest yield in dry cell weight ($4.32{\pm}0.03g/l$) as well as total carotenoids ($0.783{\pm}0.002mg/g$ dry cell weight). These values were significantly higher than those for dry cell weight ($3.77{\pm}0.02g/l$) and total carotenoid content ($0.706{\pm}0.008mg/g$) produced by the isolates from shaded habitats. Further analysis of the effect of 10 levels of light intensity on the growth characteristics of Af. marina strain ME showed that the optimum production of dry cell weight and total carotenoids was achieved at different light intensities and incubation periods. The bacterium produced the highest dry cell weight of 4.98 g/l at 3 klx in 72 h incubation, but the carotenoid production of 0.783 mg/g was achieved at 2.5 klx in 48 h incubation. Subsequent analysis of the effect of photoperiod on the production of dry cell weight and total carotenoids at optimum light intensities (3 and 2.5 klx, respectively) revealed that 18 and 24 h were the optimum photoperiods for the production of dry cell weight and total carotenoids, respectively. The unique growth characteristics of the Af. marina strain ME can be exploited for biotechnology applications.

Keywords

References

  1. Ainon H, Tan CJ, Vikineswary S. 2006. Biological characterization of Rhodomicrobium vannielii isolated from a hot spring at Gadek, Malacca, Malaysia. Malays. J. Microbiol. 2: 15-21.
  2. Al tschul SF, Gish W, Miller W, Myers EM, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Asker D, Beppu T, Ueda K. 2007. Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl. Microbiol. Cell Physiol. 77: 383-392.
  4. Ausich RL. 1997. Commercial opportunities for carotenoid production by biotechnology. Pure Appl. Chem. 69: 2169-2173.
  5. Azad S A, C hong V C, V ikineswary S . 2002. Phototrophic bacteria as feed supplement for rearing Penaeus monodon larvae. J. World Aquacult. Soc. 33: 991-994.
  6. Az ad SA, Vikineswary S, Chong VC, Ramachandran KB. 2003. Rhodovulum sulfidophilum in the treatment and utilization of sardine processing wastewater. Lett. Appl. Microbiol. 38: 13-18.
  7. B auer C, Elsen S, Swem LR, Swem DL, Masuda S. 2003. Redox and light regulation gene expression in photosynthetic prokaryotes. Phil. Trans. R. Soc. Lond. B Biol. Sci. 358: 147-154. https://doi.org/10.1098/rstb.2002.1189
  8. Bhosale P. 2004. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biotechnol. 63: 351-361. https://doi.org/10.1007/s00253-003-1441-1
  9. B randi H, Cross RA, Lenz RW, Lloyd R, Fuller RC. 1991. The accumulation of poly (3-hydroxyalkanoates) in Rhodobacter sphaeroides. Arch. Microbiol. 155: 337-340.
  10. Czaczyk K, Wokciechowska K. 2003. Formation of bacteria biofilms - the essence of the matter and mechanisms of interactions. Biotechnologia 3: 180.
  11. Do nald MA. 1996. Handbook of Microbial Media. CRC P ress, USA.
  12. Drews G. 1981. Rhodospirillum salexigens, spec. nov., an obligatory halophilic bacterium. Arch. Microbiol. 130: 325- 327. https://doi.org/10.1007/BF00425949
  13. Drews G, Imhoff JF. 1991. Phototrophic purple bacteria, pp. 51-97. In Shively JM, Barton LL (eds. ). Variations in Autotrophic Life. Academic Press, London.
  14. Eroglu E, Gunduz U, Yucel M, Eroglu I. 2010. Photosynthetic bacterial growth and productivity under continuous illumination or diurnal cycles with olive mill wastewater as feedstock. Int. J. Hydrogen Energy 35: 5293-5300. https://doi.org/10.1016/j.ijhydene.2010.03.063
  15. Farto R, Armada SP, Montes M, Guisande JA, Perez MJ, Nieto TP. 2003. Vibrio lentus associated with diseased wild octopus (Octopus vulgaris). J. Invertebr. Pathol. 83: 149-156. https://doi.org/10.1016/S0022-2011(03)00067-3
  16. Hiraishi A, Ueda Y. 1994. Intrageneric structure of the genus Rhodobacter: transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov. Int. J. Syst. Bacteriol. 44: 15-23. https://doi.org/10.1099/00207713-44-1-15
  17. Hiraishi A, Urata K, Satoh T. 1995. A new genus o f marine budding phototrophic bacteria, Rhodobium gen. nov., which includes Rhodobium orientis sp. nov. and Rhodobium marinum comb. nov. Int. J. Syst. Bacteriol. 45: 226-234. https://doi.org/10.1099/00207713-45-2-226
  18. Hirotani H, Ohigashi H, Kobayashi M, Koshimizu K, Takashi E. 1991. Inactivation of T5 phage by cis-vaccenic acid and antivirus substances from Rhodopseudomonas capsulata, and by unsaturated fatty acids and related alcohols. FEMS. Microbiol. Lett. 77: 13-18. https://doi.org/10.1111/j.1574-6968.1991.tb04314.x
  19. Imhoff JF. 1983. Rhodopseudomonas marina sp. nov., a new marine phototrophic purple bacterium. Syst. Appl. Microbiol. 4: 512-521. https://doi.org/10.1016/S0723-2020(83)80009-5
  20. Imhoff JF, Hiraishi A. 2005. Genus I. Rhodobium, pp. 571-574. In Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds.), Bergey's Manual of Systematic Bacteriology, Vol. 2, 2nd Ed. Springer, New York.
  21. Jensen SL, Jensen A. 1971. Quantitative determination of carotenoids in photosynthetic tissue, pp. 586-602. In Pietro, AS (ed.). Methods in Enzymology, Vol. 23, Photosynthesis. Academic Press, New York, USA.
  22. Ka waguchi H, Nagase H, Hashimoto K, Kimata S, Doi M, Hirata K, Miyamoto K. 2002. Effect of algal extraction on $H_{2}$ production by a photosynthetic bacterium Rhodobium marinum A-501: analysis of stimulation effect using a kinetic model. J. Biosci. Bioeng. 1: 62-69.
  23. Kompantseva EI, Gorlenko VM. 1984. A new species of moderately halophilic purple bacterium Rhodospirillum mediosalinum sp. nov. Microbiology 53: 954-961.
  24. Kompantseva EI. 1986. New halophilic purple bacteria Rhodobacter euryhalinus sp. nov. Microbiology 54: 974-982.
  25. L ee JW, Yeoman SWG, All EAL, Deng F, Gross RA, Kaplan DL. 1999. Biosynthesis of novel exopolymers by Aureobasidium pullulans. Appl. Environ. Microbiol. 65: 5265-5271.
  26. Melendez-Martinez A, Vicario I, Heredia F. 2007. Pigmentos carotenoides: consideraciones estructuralesy fisicoquimicas. Arch. Latinoamer. Nutr. 57: 2.
  27. Nissen H, Dundas ID. 1984. Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium isolated from a Portugese saltern. Arch. Microbiol. 138: 251-256. https://doi.org/10.1007/BF00402131
  28. Noparatnaraporn N, Nagai S. 1986. Selection of Rhodobacter sphaeroides P47 as a useful source of single cell protein. J. Gen. Appl. Microbiol. 1: 351-359.
  29. Prasertsan P, Choorit W, Suwanno S. 1993. Optimization for growth of Rhodocyclus gelatinosus in seafood processing effluents. World. J. Microbiol. Biotechnol. 9: 593-596. https://doi.org/10.1007/BF00386302
  30. Sasaki K, Nagai S. 1979. The optimum pH and temperature for the aerobic growth of Rhodopseudomonas gelatinosa, and vitamin B12 and ubiquinone formation on a starch medium. J. Ferment. Technol. 57: 383-386.
  31. Sawada H, Parr RC, Roger PL. 1977. Photosynthetic bacteria in waste water treatment. J. Ferment. Technol. 55: 326-336.
  32. Schulz ME, Bilger W, Scherer S. 1997. UV-B-Induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol. 179: 1940-1945. https://doi.org/10.1128/jb.179.6.1940-1945.1997
  33. Sheng GP, Yu H Q, Y ue Z . 2006. Factors influencing the production of extracellular polymeric substances by Rhodopseudomonas acidophila. Int. Biodeterior. Biodegrad. 58: 89-93. https://doi.org/10.1016/j.ibiod.2006.07.005
  34. Siefert E, Koppenhangen VB. 1982. Studies on the vitamin B12 auxotrophy of Rhodocyclus purpureus and two other vitamin B12-requiring purple nonsulfur bacteria. Arch. Microbiol. 132: 173-178. https://doi.org/10.1007/BF00508726
  35. Sot o-Feliciano K, De Jesus M, Vega-Sepulveda J, Rios- Velazquez. 2010. Isolation and characterization of purple nonsulfur anoxyphototropic bacteria from two microecosystems: tropical hypersaline microbial mats and bromeliads phytotelmata, pp. 109-116. In Mendez-Vilas A (ed.). Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex Research Center, Badazoz, Spain.
  36. Sr inivas TNR, Anil Kumar P, Sasikala Ch, Ramana ChV, Imhoff JF. 2007. Rhodobacter vinaykumarii sp. nov., a marine phototrophic alphaproteobacterium from tidal waters, and emended description of the genus Rhodobacter. Int. J. Syst. Evol. Microbiol. 57: 1984-1987. https://doi.org/10.1099/ijs.0.65077-0
  37. Tabita FR. 1995. The biochemistry and metabolic regulation of carbon metabolism and $CO_{2}$ fixation in purple non-sulfur bacteria, pp. 851-914. In Blankenship RE, Madigan MT, Bauer CE (eds.). Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  38. Tsy gankov AA, Fedorov AS, Talipova LV, Laurinavichene TV, Miyake J, Gogotov IN. 1998. Use of immobilized phototrophic microorganisms for wastewater treatment and simultaneous production of hydrogen. Appl. Biochem. Microbiol. 34: 362-366.
  39. Ur diain M, Lopez-Lopez A, Gonzalo C, Busse HJ, Langser S, Kampfer P, Rossello-Mora R. 2008. Reclassification of Rhodobium marinum and Rhodobium pfennigii as Afifella marina gen. nov. comb. nov. and Afifella pfennigii comb. nov., a new genus of photoheterotrophic Alphaproteobacteria and emended descriptions of Rhodobium, Rhodobium orientis and Rhodobium gokarnense. Syst. Appl. Microbiol. 31: 339-351. https://doi.org/10.1016/j.syapm.2008.07.002
  40. Vatsala TM. 1987. Uptake of metal ions by photosynthetic bacterium. Curr. Sci. 56: 1225-1226.
  41. Zhu YS, Hearst JE. 1986. Regulation of expression of genes for light-harvesting antenna proteins LH-I and LH-II; reaction center polypeptides RC-L, RC-M and RC-H; and enzymes of bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus by light and oxygen. Proc. Natl Acad. Sci. USA 83: 7613-7617. https://doi.org/10.1073/pnas.83.20.7613

Cited by

  1. Utilization of Vegetable Waste Juice by Purple Non-Sulfur Bacterium (Afifella marina Strain ME) for Biomass Production vol.6, pp.5, 2014, https://doi.org/10.4236/gep.2018.65017
  2. Occurrence and Distribution of Marsh Clam, Polymesoda spp. in Marudu Bay, Sabah, Malaysia vol.8, pp.2, 2018, https://doi.org/10.4236/ojms.2018.82017
  3. Potentiality of Bioconverted Leafy Vegetable Waste as Aquaculture Feed Supplement vol.9, pp.11, 2018, https://doi.org/10.4236/abb.2018.911040
  4. Anoxic growth optimization for metal respiration and photobiological hydrogen production by arsenic‐resistant Rhodopseudomonas and Rhodobacter species vol.59, pp.12, 2014, https://doi.org/10.1002/jobm.201900100
  5. Characterization of Finfish Hatchery Waste for Value Added Product vol.11, pp.3, 2014, https://doi.org/10.4236/abb.2020.113006
  6. Bioconversion of Fish Hatchery Waste as Feed in the Production of Live Feed vol.11, pp.7, 2014, https://doi.org/10.4236/abb.2020.117021
  7. Bacterial degradation of pyrene: Biochemical reactions and mechanisms vol.162, pp.None, 2014, https://doi.org/10.1016/j.ibiod.2021.105233
  8. Single Cell Protein: A Potential Substitute in Human and Animal Nutrition vol.13, pp.16, 2021, https://doi.org/10.3390/su13169284