DOI QR코드

DOI QR Code

Senior Thai Fecal Microbiota Comparison Between Vegetarians and Non-Vegetarians Using PCR-DGGE and Real-Time PCR

  • Ruengsomwong, Supatjaree (Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University) ;
  • Korenori, Yuki (Laboratory of Microbial Technology, Division of Microbial Science and Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University) ;
  • Sakamoto, Naoshige (Laboratory of Microbial Technology, Division of Microbial Science and Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University) ;
  • Wannissorn, Bhusita (Bioscience Department, Thailand Institute of Scientific and Technological Research) ;
  • Nakayama, Jiro (Laboratory of Microbial Technology, Division of Microbial Science and Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University) ;
  • Nitisinprasert, Sunee (Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University)
  • Received : 2013.10.14
  • Accepted : 2014.04.14
  • Published : 2014.08.28

Abstract

The fecal microbiotas were investigated in 13 healthy Thai subjects using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Among the 186 DNA bands detected on the polyacrylamide gel, 37 bands were identified as representing 11 species: Bacteroides thetaiotaomicron, Bacteroides ovatus, Bacteroides uniformis, Bacteroides vulgatus, Clostridium colicanis, Eubacterium eligenes, E. rectale, Faecalibacterium prausnitzii, Megamonas funiformis, Prevotella copri, and Roseburia intestinalis, belonging mainly to the groups of Bacteroides, Prevotella, Clostridium, and F. prausnitzii. A dendrogram of the PCR-DGGE divided the subjects; vegetarians and non-vegetarians. The fecal microbiotas were also analyzed using a quantitative real-time PCR focused on Bacteroides, Bifidobacterium, Enterobacteriaceae, Clostrium coccoides-Eubacterium rectale, C. leptum, Lactobacillus, and Prevotella. The nonvegetarian and vegetarian subjects were found to have significant differences in the high abundance of the Bacteroides and Prevotella genera, respectively. No significant differences were found in the counts of Bifidabacterium, Enterobacteriaceae, C. coccoides-E. rectale group, C. leptum group, and Lactobacillus. Therefore, these findings on the microbiota of healthy Thais consuming different diets could provide helpful data for predicting the health of South East Asians with similar diets.

Keywords

References

  1. Arumugam M, Raes J, Pelletier E, Paslier DL, Yamada T, Mende DR, et al. 2011. Enterotypes of the human gut microbiome. Nature 473: 174-180. https://doi.org/10.1038/nature09944
  2. Attasara P, Buasom R. 2012. Hospital-based Cancer Registry 2011, pp 1-4. Information Technology Division, National Cancer Institute, Bangkok.
  3. Bartosch S, Fite A, Macfarlane GT, McMurdo ME. 2004. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol. 70: 3575-3581. https://doi.org/10.1128/AEM.70.6.3575-3581.2004
  4. Benno Y, Endo K, Mizutani T, Namba Y, Komori T, Mitsuoka T. 1989. Comparison of fecal microflora of elderly persons in rural and urban areas of Japan. Appl. Environ. Microbiol. 55: 1100-1105.
  5. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, et al. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488: 178-184. https://doi.org/10.1038/nature11319
  6. Clarridge J. 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17: 840-862. https://doi.org/10.1128/CMR.17.4.840-862.2004
  7. Crowe FL, Roddam AW, Key TJ, Appleby PN, Overvad K, Jakobsen MU, et al. 2011. Fruit and vegetable intake and mortality from ischaemic heart disease: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heart study. Eur. Heart J. 465: 1-9.
  8. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS 107: 14691-14696. https://doi.org/10.1073/pnas.1005963107
  9. Dethlefsen L, Eckburg PB, Bik EM, Relman DA. 2006. Assembly of the human intestinal microbiota. Trends Ecol. Evol. 21: 517-523. https://doi.org/10.1016/j.tree.2006.06.013
  10. Favier CF, Vaughan EE, de Vos WM, Akkermans AD. 2002. Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68: 219-226. https://doi.org/10.1128/AEM.68.1.219-226.2002
  11. Haarman M, Knol J. 2006. Quantitative real-time PCR analysis of fecal Lactobacillus species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 72: 2359-2365. https://doi.org/10.1128/AEM.72.4.2359-2365.2006
  12. Hayashi H, Sakamoto M, Benno Y. 2002. Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and culture cultivation. Microbiol. Immunol. 46: 819-831. https://doi.org/10.1111/j.1348-0421.2002.tb02769.x
  13. Hayashi H, Sakamoto M, Kitahara M, Benno Y. 2003. Molecular analysis of fecal microbiota in elderly individuals 16S rDNA libraries and T-RFLP. Microbiol. Immunol. 47: 5557-5570.
  14. Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y. 2005. Molecular analysis of jejunal, ileal, caecal and recto sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J. Med. Microbiol. 54: 1093-1101. https://doi.org/10.1099/jmm.0.45935-0
  15. Jeffery IB, O'Toole PW. 2013. Diet-microbiota interactions and their implications for healthy living. Nutrient 5: 234-252. https://doi.org/10.3390/nu5010234
  16. Kabeerdoss J, Devi RS, Mary RR, Ramakrishna BS. 2012. Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. Br. J. Nutr. 108: 953-957. https://doi.org/10.1017/S0007114511006362
  17. Liszt K, Zwielehner J, Handschur M, Hippe B, Thaler R, Haslberger AG. 2009. Characterization of bacteria, Clostridia and Bacteroides in feces of vegetarians using qPCR and PCRDGGE fingerprinting. Ann. Nutr. Metab. 54: 253-257. https://doi.org/10.1159/000229505
  18. Mariat D, Firmesse O, Levenez F, Guimaraes VD, Sokol H, Dore J, et al. 2009. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9: 123. https://doi.org/10.1186/1471-2180-9-123
  19. Matsuda K, Tsuji H, Asahara T, Matsumoto K, Takada T, Nomoto K. 2009. Establishment of an analytical system for the human fecal microbiota, based on reverse transcriptionquantitative PCR targing of multicopy rRNA molecules. Appl. Environ. Microbiol. 75: 1961-1969. https://doi.org/10.1128/AEM.01843-08
  20. Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R. 2004. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl. Environ. Microbiol. 70: 7220-7228. https://doi.org/10.1128/AEM.70.12.7220-7228.2004
  21. Maukonen J, Matto J, Satokari R, Soderlund H, Mattila- Sandholm T, Saarela M. 2006. PCR DGGE and RT-PCR DGGE show diversity and short-term temporal stability in the Clostridium cocccoides-Eubacterium rectale group in the human intestinal microbiota. FEMS Microbiol. Ecol. 58: 517-528. https://doi.org/10.1111/j.1574-6941.2006.00179.x
  22. Matijasi B B, O bermajer T, L ipoglavsek L, G rabnar I , Gorazd A, Rogelj I. 2013. Association of dietary type with fecal microbiota in vegetarians and omnivore in Slovenia. Eur. J. Nutr. DOI: 10.1007/s00394-013-0607-6.
  23. Moore W, Moore L. 1995. Intestinal floras of populations that have a high risk of colon cancer. Appl. Environ. Microbiol. 61: 3202-3207.
  24. Nair P, Mayberry JF. 1994. Vegetarianism, dietary fibre and gastro-intestinal disease. Digest. Dis. 12: 177-185. https://doi.org/10.1159/000171451
  25. Nam YD, Jung MJ, Roh SW, Kim MS, Bae JW. 2011. Comparative analysis of Korean human gut microbiota by pyrosequencing. PLoS ONE 6: e22109. https://doi.org/10.1371/journal.pone.0022109
  26. NCBI. Prevotella copri DSM 18205 P_copri-1.0.1_Cont7.2, whole genome shotgun sequence. Available from http:// www.ncbi.nlm.nih.gov/nuccore/NZ_ACBX02000037.1. Accessed Apr. 11, 2012.
  27. O'Sullivan DJ. 2000. Methods for analysis of the intestinal microflora. Curr. Issues Intest. Microbiol. 1: 39-50.
  28. Petti C, Polage C, Schreckenberger P. 2005. The role of 16S rRNA gene sequencing in identification of microorganisms misidentified by conventional methods. J. Clin. Microbiol. 43: 6123-6125. https://doi.org/10.1128/JCM.43.12.6123-6125.2005
  29. Rinttilä T, Kassinen A, Malinen E, Krogius L, Palva A. 2004. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 97: 1166-1177. https://doi.org/10.1111/j.1365-2672.2004.02409.x
  30. Songjinda P, Nakayama J, Kuroki Y, Tanaka S, Fukuda S, Kiyohara C, et al. 2005. Molecular monitoring of the developmental bacterial community in the gastrointestinal tract of Japan infants. Biosci. Biotechnol. Biochem. 69: 638-641. https://doi.org/10.1271/bbb.69.638
  31. Vanughan EE, Schut F, Heilig HG, Zoetendal EG, de Vos WM, Akkermans AD. 2000. A molecular view of the intestinal ecosystem. Curr. Issues Intest. Microbiol. 1: 1-12.
  32. Wilson M. 2005. Microbial Inhabitant of Humans, pp. 2-3. 1st Ed. Cambridge University, New York.
  33. Wu GD, Bushmanc FD, Lewis JD. 2013. Diet, the human gut microbiota, and IBD. Anaerobe 24: 117-120. https://doi.org/10.1016/j.anaerobe.2013.03.011
  34. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y, Keilbaugh SA, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105-108. https://doi.org/10.1126/science.1208344
  35. Yatsuneko T, Rey FE, Manary MJ, Trehan I, Dominguez- Bello MG, Contreras M, et al. 2012. Human gut microbiome viewed across age and geography. Nature 486: 222-227.
  36. Zimmer J, Lange B, Frick JS, Sauer H, Zimmermann K, Schwiertz A, et al. 2012. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur. J. Clin. Nutr. 66: 53-60. https://doi.org/10.1038/ejcn.2011.141

Cited by

  1. HIV-induced alteration in gut microbiota : Driving factors, consequences, and effects of antiretroviral therapy vol.5, pp.4, 2014, https://doi.org/10.4161/gmic.32132
  2. The Health Advantage of a Vegan Diet: Exploring the Gut Microbiota Connection vol.6, pp.11, 2014, https://doi.org/10.3390/nu6114822
  3. Fizzy: feature subset selection for metagenomics vol.16, pp.None, 2014, https://doi.org/10.1186/s12859-015-0793-8
  4. Gut Microbiota Community and Its Assembly Associated with Age and Diet in Chinese Centenarians vol.25, pp.8, 2014, https://doi.org/10.4014/jmb.1410.10014
  5. Diversity in gut bacterial community of school-age children in Asia vol.5, pp.None, 2014, https://doi.org/10.1038/srep08397
  6. Distinct gut microbiota of healthy children from two different geographic regions of Thailand vol.197, pp.4, 2014, https://doi.org/10.1007/s00203-015-1089-0
  7. Fecal Microbiota in Healthy Subjects Following Omnivore, Vegetarian and Vegan Diets: Culturable Populations and rRNA DGGE Profiling vol.10, pp.6, 2014, https://doi.org/10.1371/journal.pone.0128669
  8. Application of Laser Capture Microdissection and 16S rRNA Gene Polymerase Chain Reaction in the Analysis of Bacteria Colonizing the Intestinal Tissue of Neonates With Necrotizing Enterocolitis vol.34, pp.10, 2014, https://doi.org/10.1097/inf.0000000000000837
  9. Vegetarian diets and gut microbiota: important shifts in markers of metabolism and cardiovascular disease vol.74, pp.7, 2014, https://doi.org/10.1093/nutrit/nuw012
  10. Dietary Casein and Soy Protein Isolate Modulate the Effects of Raffinose and Fructooligosaccharides on the Composition and Fermentation of Gut Microbiota in Rats vol.81, pp.8, 2014, https://doi.org/10.1111/1750-3841.13391
  11. Microbial Community of Healthy Thai Vegetarians and Non-Vegetarians, Their Core Gut Microbiota, and Pathogen Risk vol.26, pp.10, 2014, https://doi.org/10.4014/jmb.1603.03057
  12. Role of the Gut Microbiota of Children in Diarrhea Due to the Protozoan Parasite Entamoeba histolytica vol.213, pp.10, 2014, https://doi.org/10.1093/infdis/jiv772
  13. Development and Use of a Real-Time Quantitative PCR Method for Detecting and Quantifying Equol-Producing Bacteria in Human Faecal Samples and Slurry Cultures vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.01155
  14. Bifidobacteria, Lactobacilli, and Short Chain Fatty Acids of Vegetarians and Omnivores vol.48, pp.1, 2014, https://doi.org/10.1515/sab-2017-0007
  15. Worse inflammatory profile in omnivores than in vegetarians associates with the gut microbiota composition vol.9, pp.None, 2014, https://doi.org/10.1186/s13098-017-0261-x
  16. In vitro fermentation of copra meal hydrolysate by chicken microbiota vol.8, pp.1, 2018, https://doi.org/10.1007/s13205-017-1058-1
  17. Gut microbiota diversity according to dietary habits and geographical provenance vol.7, pp.None, 2018, https://doi.org/10.1016/j.humic.2018.01.001
  18. Repeated rectal application of a hyperosmolar lubricant is associated with microbiota shifts but does not affect Pr EP drug concentrations: results from a randomized trial in men who have sex with me vol.21, pp.10, 2018, https://doi.org/10.1002/jia2.25199
  19. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review vol.122, pp.2, 2014, https://doi.org/10.1017/s0007114519000680
  20. Clostridium colicanis bacteraemia in an asthmatic patient diagnosed as acute respiratory infection vol.37, pp.9, 2014, https://doi.org/10.1016/j.eimce.2018.07.020
  21. Lower Circulating Branched‐Chain Amino Acid Concentrations Among Vegetarians are Associated with Changes in Gut Microbial Composition and Function vol.63, pp.24, 2019, https://doi.org/10.1002/mnfr.201900612
  22. Ernährung bei entzündlichen Darmerkrankungen vol.2, pp.3, 2014, https://doi.org/10.1159/000509482
  23. The Impact of Diet on Microbiota Evolution and Human Health. Is Diet an Adequate Tool for Microbiota Modulation? vol.12, pp.6, 2020, https://doi.org/10.3390/nu12061654
  24. Is a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review vol.60, pp.17, 2014, https://doi.org/10.1080/10408398.2019.1676697
  25. Trimethylamine N-oxide: heart of the microbiota-CVD nexus? vol.34, pp.1, 2014, https://doi.org/10.1017/s0954422420000177
  26. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota vol.13, pp.8, 2014, https://doi.org/10.3390/nu13082795