References
- Arumugam M, Raes J, Pelletier E, Paslier DL, Yamada T, Mende DR, et al. 2011. Enterotypes of the human gut microbiome. Nature 473: 174-180. https://doi.org/10.1038/nature09944
- Attasara P, Buasom R. 2012. Hospital-based Cancer Registry 2011, pp 1-4. Information Technology Division, National Cancer Institute, Bangkok.
- Bartosch S, Fite A, Macfarlane GT, McMurdo ME. 2004. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol. 70: 3575-3581. https://doi.org/10.1128/AEM.70.6.3575-3581.2004
- Benno Y, Endo K, Mizutani T, Namba Y, Komori T, Mitsuoka T. 1989. Comparison of fecal microflora of elderly persons in rural and urban areas of Japan. Appl. Environ. Microbiol. 55: 1100-1105.
- Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, et al. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488: 178-184. https://doi.org/10.1038/nature11319
- Clarridge J. 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17: 840-862. https://doi.org/10.1128/CMR.17.4.840-862.2004
- Crowe FL, Roddam AW, Key TJ, Appleby PN, Overvad K, Jakobsen MU, et al. 2011. Fruit and vegetable intake and mortality from ischaemic heart disease: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heart study. Eur. Heart J. 465: 1-9.
- De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS 107: 14691-14696. https://doi.org/10.1073/pnas.1005963107
- Dethlefsen L, Eckburg PB, Bik EM, Relman DA. 2006. Assembly of the human intestinal microbiota. Trends Ecol. Evol. 21: 517-523. https://doi.org/10.1016/j.tree.2006.06.013
- Favier CF, Vaughan EE, de Vos WM, Akkermans AD. 2002. Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68: 219-226. https://doi.org/10.1128/AEM.68.1.219-226.2002
- Haarman M, Knol J. 2006. Quantitative real-time PCR analysis of fecal Lactobacillus species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 72: 2359-2365. https://doi.org/10.1128/AEM.72.4.2359-2365.2006
- Hayashi H, Sakamoto M, Benno Y. 2002. Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and culture cultivation. Microbiol. Immunol. 46: 819-831. https://doi.org/10.1111/j.1348-0421.2002.tb02769.x
- Hayashi H, Sakamoto M, Kitahara M, Benno Y. 2003. Molecular analysis of fecal microbiota in elderly individuals 16S rDNA libraries and T-RFLP. Microbiol. Immunol. 47: 5557-5570.
- Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y. 2005. Molecular analysis of jejunal, ileal, caecal and recto sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J. Med. Microbiol. 54: 1093-1101. https://doi.org/10.1099/jmm.0.45935-0
- Jeffery IB, O'Toole PW. 2013. Diet-microbiota interactions and their implications for healthy living. Nutrient 5: 234-252. https://doi.org/10.3390/nu5010234
- Kabeerdoss J, Devi RS, Mary RR, Ramakrishna BS. 2012. Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. Br. J. Nutr. 108: 953-957. https://doi.org/10.1017/S0007114511006362
- Liszt K, Zwielehner J, Handschur M, Hippe B, Thaler R, Haslberger AG. 2009. Characterization of bacteria, Clostridia and Bacteroides in feces of vegetarians using qPCR and PCRDGGE fingerprinting. Ann. Nutr. Metab. 54: 253-257. https://doi.org/10.1159/000229505
- Mariat D, Firmesse O, Levenez F, Guimaraes VD, Sokol H, Dore J, et al. 2009. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9: 123. https://doi.org/10.1186/1471-2180-9-123
- Matsuda K, Tsuji H, Asahara T, Matsumoto K, Takada T, Nomoto K. 2009. Establishment of an analytical system for the human fecal microbiota, based on reverse transcriptionquantitative PCR targing of multicopy rRNA molecules. Appl. Environ. Microbiol. 75: 1961-1969. https://doi.org/10.1128/AEM.01843-08
- Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R. 2004. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl. Environ. Microbiol. 70: 7220-7228. https://doi.org/10.1128/AEM.70.12.7220-7228.2004
- Maukonen J, Matto J, Satokari R, Soderlund H, Mattila- Sandholm T, Saarela M. 2006. PCR DGGE and RT-PCR DGGE show diversity and short-term temporal stability in the Clostridium cocccoides-Eubacterium rectale group in the human intestinal microbiota. FEMS Microbiol. Ecol. 58: 517-528. https://doi.org/10.1111/j.1574-6941.2006.00179.x
- Matijasi B B, O bermajer T, L ipoglavsek L, G rabnar I , Gorazd A, Rogelj I. 2013. Association of dietary type with fecal microbiota in vegetarians and omnivore in Slovenia. Eur. J. Nutr. DOI: 10.1007/s00394-013-0607-6.
- Moore W, Moore L. 1995. Intestinal floras of populations that have a high risk of colon cancer. Appl. Environ. Microbiol. 61: 3202-3207.
- Nair P, Mayberry JF. 1994. Vegetarianism, dietary fibre and gastro-intestinal disease. Digest. Dis. 12: 177-185. https://doi.org/10.1159/000171451
- Nam YD, Jung MJ, Roh SW, Kim MS, Bae JW. 2011. Comparative analysis of Korean human gut microbiota by pyrosequencing. PLoS ONE 6: e22109. https://doi.org/10.1371/journal.pone.0022109
- NCBI. Prevotella copri DSM 18205 P_copri-1.0.1_Cont7.2, whole genome shotgun sequence. Available from http:// www.ncbi.nlm.nih.gov/nuccore/NZ_ACBX02000037.1. Accessed Apr. 11, 2012.
- O'Sullivan DJ. 2000. Methods for analysis of the intestinal microflora. Curr. Issues Intest. Microbiol. 1: 39-50.
- Petti C, Polage C, Schreckenberger P. 2005. The role of 16S rRNA gene sequencing in identification of microorganisms misidentified by conventional methods. J. Clin. Microbiol. 43: 6123-6125. https://doi.org/10.1128/JCM.43.12.6123-6125.2005
- Rinttilä T, Kassinen A, Malinen E, Krogius L, Palva A. 2004. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 97: 1166-1177. https://doi.org/10.1111/j.1365-2672.2004.02409.x
- Songjinda P, Nakayama J, Kuroki Y, Tanaka S, Fukuda S, Kiyohara C, et al. 2005. Molecular monitoring of the developmental bacterial community in the gastrointestinal tract of Japan infants. Biosci. Biotechnol. Biochem. 69: 638-641. https://doi.org/10.1271/bbb.69.638
- Vanughan EE, Schut F, Heilig HG, Zoetendal EG, de Vos WM, Akkermans AD. 2000. A molecular view of the intestinal ecosystem. Curr. Issues Intest. Microbiol. 1: 1-12.
- Wilson M. 2005. Microbial Inhabitant of Humans, pp. 2-3. 1st Ed. Cambridge University, New York.
- Wu GD, Bushmanc FD, Lewis JD. 2013. Diet, the human gut microbiota, and IBD. Anaerobe 24: 117-120. https://doi.org/10.1016/j.anaerobe.2013.03.011
- Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y, Keilbaugh SA, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105-108. https://doi.org/10.1126/science.1208344
- Yatsuneko T, Rey FE, Manary MJ, Trehan I, Dominguez- Bello MG, Contreras M, et al. 2012. Human gut microbiome viewed across age and geography. Nature 486: 222-227.
- Zimmer J, Lange B, Frick JS, Sauer H, Zimmermann K, Schwiertz A, et al. 2012. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur. J. Clin. Nutr. 66: 53-60. https://doi.org/10.1038/ejcn.2011.141
Cited by
- HIV-induced alteration in gut microbiota : Driving factors, consequences, and effects of antiretroviral therapy vol.5, pp.4, 2014, https://doi.org/10.4161/gmic.32132
- The Health Advantage of a Vegan Diet: Exploring the Gut Microbiota Connection vol.6, pp.11, 2014, https://doi.org/10.3390/nu6114822
- Fizzy: feature subset selection for metagenomics vol.16, pp.None, 2014, https://doi.org/10.1186/s12859-015-0793-8
- Gut Microbiota Community and Its Assembly Associated with Age and Diet in Chinese Centenarians vol.25, pp.8, 2014, https://doi.org/10.4014/jmb.1410.10014
- Diversity in gut bacterial community of school-age children in Asia vol.5, pp.None, 2014, https://doi.org/10.1038/srep08397
- Distinct gut microbiota of healthy children from two different geographic regions of Thailand vol.197, pp.4, 2014, https://doi.org/10.1007/s00203-015-1089-0
- Fecal Microbiota in Healthy Subjects Following Omnivore, Vegetarian and Vegan Diets: Culturable Populations and rRNA DGGE Profiling vol.10, pp.6, 2014, https://doi.org/10.1371/journal.pone.0128669
- Application of Laser Capture Microdissection and 16S rRNA Gene Polymerase Chain Reaction in the Analysis of Bacteria Colonizing the Intestinal Tissue of Neonates With Necrotizing Enterocolitis vol.34, pp.10, 2014, https://doi.org/10.1097/inf.0000000000000837
- Vegetarian diets and gut microbiota: important shifts in markers of metabolism and cardiovascular disease vol.74, pp.7, 2014, https://doi.org/10.1093/nutrit/nuw012
- Dietary Casein and Soy Protein Isolate Modulate the Effects of Raffinose and Fructooligosaccharides on the Composition and Fermentation of Gut Microbiota in Rats vol.81, pp.8, 2014, https://doi.org/10.1111/1750-3841.13391
- Microbial Community of Healthy Thai Vegetarians and Non-Vegetarians, Their Core Gut Microbiota, and Pathogen Risk vol.26, pp.10, 2014, https://doi.org/10.4014/jmb.1603.03057
- Role of the Gut Microbiota of Children in Diarrhea Due to the Protozoan Parasite Entamoeba histolytica vol.213, pp.10, 2014, https://doi.org/10.1093/infdis/jiv772
- Development and Use of a Real-Time Quantitative PCR Method for Detecting and Quantifying Equol-Producing Bacteria in Human Faecal Samples and Slurry Cultures vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.01155
- Bifidobacteria, Lactobacilli, and Short Chain Fatty Acids of Vegetarians and Omnivores vol.48, pp.1, 2014, https://doi.org/10.1515/sab-2017-0007
- Worse inflammatory profile in omnivores than in vegetarians associates with the gut microbiota composition vol.9, pp.None, 2014, https://doi.org/10.1186/s13098-017-0261-x
- In vitro fermentation of copra meal hydrolysate by chicken microbiota vol.8, pp.1, 2018, https://doi.org/10.1007/s13205-017-1058-1
- Gut microbiota diversity according to dietary habits and geographical provenance vol.7, pp.None, 2018, https://doi.org/10.1016/j.humic.2018.01.001
- Repeated rectal application of a hyperosmolar lubricant is associated with microbiota shifts but does not affect Pr EP drug concentrations: results from a randomized trial in men who have sex with me vol.21, pp.10, 2018, https://doi.org/10.1002/jia2.25199
- Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review vol.122, pp.2, 2014, https://doi.org/10.1017/s0007114519000680
- Clostridium colicanis bacteraemia in an asthmatic patient diagnosed as acute respiratory infection vol.37, pp.9, 2014, https://doi.org/10.1016/j.eimce.2018.07.020
- Lower Circulating Branched‐Chain Amino Acid Concentrations Among Vegetarians are Associated with Changes in Gut Microbial Composition and Function vol.63, pp.24, 2019, https://doi.org/10.1002/mnfr.201900612
- Ernährung bei entzündlichen Darmerkrankungen vol.2, pp.3, 2014, https://doi.org/10.1159/000509482
- The Impact of Diet on Microbiota Evolution and Human Health. Is Diet an Adequate Tool for Microbiota Modulation? vol.12, pp.6, 2020, https://doi.org/10.3390/nu12061654
- Is a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review vol.60, pp.17, 2014, https://doi.org/10.1080/10408398.2019.1676697
- Trimethylamine N-oxide: heart of the microbiota-CVD nexus? vol.34, pp.1, 2014, https://doi.org/10.1017/s0954422420000177
- Effect of Diet and Dietary Components on the Composition of the Gut Microbiota vol.13, pp.8, 2014, https://doi.org/10.3390/nu13082795