DOI QR코드

DOI QR Code

Comparative Study of the Discrimination of Uni-variate Analysis and Multi-variate Analysis for Small-Business Firm's Fail Prediction

중소기업 부실예측을 위한 단일변량분석과 다변량분석의 판별력 비교에 관한 연구

  • 문종건 (호서대학교 벤처전문대학원 벤처정보경영학과) ;
  • 하규수 (호서대학교 벤처전문대학원 벤처정보경영학과)
  • Received : 2014.04.29
  • Accepted : 2014.08.07
  • Published : 2014.08.31

Abstract

This study selected 83 manufacturing firms that had been delisted from the KOSDAQ market from 2009 to 2012 and the sample firms for the two-paired sampling method were compared with 83 normal firms running businesses with same items or in same industry. The 75 financial ratios for five years immediately before delisting were used for Mean Difference Analysis with those of normal firms. Fifteen variables assumed to be significant variables for five consecutive years out of the analysis were used to in the Dichotomous Classification Technique, Logistic Regression Analysis and Discriminant Analysis. As a result of those three analyses, the Logistic Regression Analysis model was found to show the greatest discrimination. This study is differentiated from previous studies as it assumed that the firm's failure proceeded slowly over long period of time and it tried to predict the firm's failure earlier using the five years' historical data immediately before failure, whereas previous studies predicted it using three years' data only. This study is also differentiated from the proceeding comparative studies by its statistically complex Multi-Variate Analysis and Dichotomous Classification Analysis, which general stakeholders can easily approach.

본 논문은 2009년~2012년까지 코스닥시장에서 상장폐지된 기업 중 제조업을 영위하는 83개사를 부실기업표본으로 선정하고 동종품목 혹은 동종 산업군에 속하는 정상기업 83개사와 함께 쌍대표본으로 표본기업을 구성하였다. 상장폐지직전 5년간 75개의 재무적 비율을 부실기업과 정상기업 두 그룹의 평균차이분석을 통하여 5년 연속 유의미한 변수로 출현한 15개 변수를 선정하여 단일변량분석(이원분류법)과 다변량분석(로지스틱회귀분석 및 판별분석)을 진행하였다. 분석 결과, 로지스틱회귀분석모형의 판별력(분류정확도)이 가장 높게 나타났다. 본 연구는 기업부실이 장기간에 걸쳐 서서히 진행된다는 점을 감안하여 상장폐지직전 5년 전 자료까지 고려하여 기업부실을 예측함으로써 기존 선행연구들이 상장폐지 직전 3년 전 자료로 기업부실을 예측한 것과 달리 보다 조기에 기업부실을 예측하려고 시도한 점과 일반 이해관계자들도 쉽게 접근할 수 있는 이원분류법(단일변량분석)과 통계적으로 복잡한 다변량분석을 비교분석한 것도 기존 선행연구와 차별화된다.

Keywords

References

  1. Craig, A., Aleda, V., Bharath, G., Atanu, C, Jack, M., Tim, H., and Michelle, D.(2013), "2013 Global Manufacturing Competitiveness Index", NY, Deloitte Touche Tomatsu Limited and U.S. Council on Competitiveness, Retrieved Jan 1, 2014 from https://www. deloitte.com/assets/Dcom-Mexico/Local%20Assets/Documents/mx(en-mx)Global_Manufacturing _Competitiveness2013.pdf
  2. Beaver, W. H., "Financial Ratios as Predictors of Failure", Journal of Accounting Research, Vol.4, No.3, pp. 71-111, 1966. DOI: http://dx.doi.org/10.2307/2490171
  3. Deakin, E. B, "A Discriminant Analysis of Predictors of Business Failure", Journal of Accounting Research, Vol.10, No.1, pp. 167-179, 1972. DOI: http://dx.doi.org/10.2307/2490225
  4. Altman, E. I. and McGough, T. P.,"Evaluation of a Company as a Going Concern", Journal of Accounting, 138(6), pp.50-57, 1974.
  5. Weston, J. F. and E. F. Brigham, "Instructor's Manual to A company Managerial Finance", The Dryden Press. Vol.7, pp. 961, 1981.
  6. Foster, G., "Financial Statement Analysis", New Jersey, The second ed. Prentice Hall, pp. 536. 1986.
  7. S. H. Hwang, "A Study on Corporate Failure Prediction", Korean Accounting Review, 12(7), pp.57-78. 1991.
  8. K, C. Lee, "A Comparative Study on the Bankruptcy Prediction Power of Statistical Model and AI Models : MDA, Inductive Learning, Neural Network", Journal of the Korean OR and MS Society, 18(2), pp.57-81. 1993.
  9. H. Y. Jang, "The firm failure prediction Model of non-financial listed firms". Korean Journal of Financial Management. 15(1). pp.299-327. 1998.
  10. S. B. Jeon, and M. C. Kim, "Reality and Theory on Business Failure", Seoul, Dasan Publishing Company. pp.15-16. 2000.
  11. T. S. Choi, H. K. Kim, and S. H. Kim, "Comparison of the Discrimination of Business Failure prediction Models", Journal of the Korean OR and MS Society, 27(2), pp.1-13. 2002. DOI: http://dx.doi.org/10.4134/JKMS.2002.39.1.001
  12. H. J. Oh, "Usefulness of Credit Rating in the Bankruptcy Prediction Model", Journal of Economic Studies, 23(2), pp.173-208. 2005.
  13. S. I. Kueon, "Corporate credit analysis," Seoul.Korea Banking Institute. pp.355-360. 2011.
  14. Y. K. Jang, "Corporate Analysis", Seoul, Muyok Publishing Company, pp.493-525, 2012,
  15. Jodi, Bellovary., Don Giacomino. and Michael Akers., "A Review of bankruptcy Prediction Studies :1930 to Present", Journal of financial Education, Vol.33, pp. 2. 2007.
  16. Altman, E. I, " Financial Ratios, Disriminant Analysis and Prediction of Corporate Bankruptcy", Journal of Finance, Vol.23, No.4, pp. 589-609. 1968. DOI: http://dx.doi.org/10.1111/j.1540-6261.1968.tb00843.x
  17. Bhandari S. B and Iyer R. "Predicting Business Failure Using Cash Flow Statement Based Measures", Managerial Finance, Vol.39. No.7, pp. 667-676. 2013. DOI: http://dx.doi.org/10.1108/03074351311323455
  18. C. K. Kim, and S. H. Kim, "The Business Failure Prediction Model of Small and Medium-sized Firms", Paichai University, Journal of Social Science Research, 17, pp.111-132. 1998.
  19. H. J. Park, "An empirical study on the failure prediction model of the firms listed on the kosdaq", Doctoral dissertation, Paichai University. 2008
  20. H. W. Jun, and Y. H. Chung, " An Empirical Study on the Failure Prediction Model of Delisting Firms in KOSDAQ Market".Journal of Business Education. 26(1), pp.93-108, 2012.
  21. Zmijewski. M. E., "Methodological Issues Related to the Estimation of Financial Distress Prediction Models". Journal of Accounting Research, Vol.22, pp. 59-82. 1984. DOI: http://dx.doi.org/10.2307/2490859
  22. Ohlson. J. A. "Financial Ratios and the Probabilistic Prediction of Bankruptcy". Journal of Accounting Research, Vol.18, No.1, pp. 109-131.1980. https://doi.org/10.2307/2490395
  23. J. H. Nam, " The Cause of Business's Failure and the Analysis of the Bankruptcy Prediction Model", Journal of Money & Finance 12(2), pp.77-107. 1998.
  24. G. C. Kim, "A study on corporate failure predictions by using audit opinions and accounting firm's characteristics", Doctoral dissertation, Soongsil University. 2011.
  25. K. S. Bae, and S. H. Jung, "An empirical study on the prediction model of the delisted firms". Tax Accounting Research. 30. pp.125-140. 2011.
  26. J. G. Moon, and Y. Hwangbo, "An empirical study on a firm's fail prediction model by considering whether there are embezzlement, malpractice and the largest shareholder changes or not". Asia-Pacific Journal of Business Venturing and Entrepreneurship, 9(1). pp.119-132. 2014.
  27. H. Chun, "An empirical study on the financial distresses and changes in the largest shareholder in the information technology industry", master's thesis, Seoul National University of Technology. 2009.
  28. K. H. Cho, "An empirical research on the effects of corporate bankruptcy forecasting by audit report and audit quality", Doctoral dissertation, Catholic University. 2012.
  29. H. W. Jun, Y. H. Chung, and D. H. Shin, "A Study on the Failure Prediction Model of Delisting Firms", Korea International Accounting Review, 38(8), pp.331-362. 2011.
  30. The Delisted Companies in KOSDAQ, (2009 to 2012), Retrieved May 1, 2013 from http://www.krx. co.kr /m6/m6_1/m6_1_6/JHPKOR06001_06.jsp
  31. Data Analysis, Retrieval and Transfer System in Financial Supervisory Service, http://dart.fss.or.kr/dsab001/main.do?autoSearch=true