DOI QR코드

DOI QR Code

Effect of the variation of base thickness on the heat release performance of the heat sink

히트싱크 베이스의 두께 변화가 방열성능에 미치는 영향

  • Kim, Jung Hyun (Division of Mechanical Design Engineering, Chonbuk National University) ;
  • Lee, Gyo Woo (Division of Mechanical Design Engineering, Chonbuk National University)
  • 김정현 (전북대학교 기계설계공학부) ;
  • 이교우 (전북대학교 기계설계공학부)
  • Received : 2014.05.21
  • Accepted : 2014.08.07
  • Published : 2014.08.31

Abstract

In this study, to maximize the heat release from the heat generating environment, such as a high-capacity inverter, the heat release performance of the extruded-type heat sinks with the variation of the base thickness were investigated using the experimental and numerical methods. The base thickness was varied from 5 to 14 mm. The heat release was characterized by the amount of heat released through the heat sink, the surface temperature of heat sink base between the heat sources, and temperature of heat sources. The surface temperatures between heat sources and the amounts of heat release were improved more as the base thickness was decreased. In contrast, the temperatures of the heat sources decreased with increasing base thickness. Based on the case study of these heat sinks, it is believed that a heat sink with a 9.5mm-thick base was optimized for the heat release.

본 연구는 고용량 인버터 등의 열 발생 환경에서 히트싱크의 방열성능을 극대화하기 위한 파라미터 연구의 일환으로 히트싱크 베이스 두께 변화에 대한 방열성능 변화를 조사하였다. 베이스 두께가 각각 5, 9.5 및 14 mm인 히트싱크의 방열성능을 히트싱크 베이스의 윗면 중앙 온도, 히트싱크를 통한 방열량 및 열원부의 온도 등의 세 가지 지표의 비교를 통하여 고찰하였다. 실험연구와 전산유체역학 프로그램을 이용한 해석연구를 병행하여 베이스 두께 변화에 따른 각 방열 성능 지표에 변화가 있음을 확인하였다. 베이스의 윗면 중앙 온도와 방열율은 베이스의 두께가 얇을수록 향상되는 효과를 보였고, 베이스 열원부의 온도는 베이스의 두께가 두꺼울수록 낮아지는 경향을 보였다. 성능 지표의 비교 고찰을 통해 연구에 사용된 세 히트싱크 내에서는 베이스의 두께가 9.5 mm인 히트싱크에서 최적점이 나타났다. 따라서 제한적이지만 본 연구결과 내에서는 9.5 mm 두께의 베이스를 가지는 히트싱크가 최적의 방열 성능을 보이는 것으로 판단되었다.

Keywords

References

  1. Santi, E., Caiafa, A., Kang, X., Hudgins, J. L., Palmer, P. R., Goodwine, D. and Monti, A., "Temperature Effects on Punch-Through IGBTs", IEEE Trans. on Industry Applications, Vol. 40, No. 2, pp. 472-482, 2004. DOI: http://dx.doi.org/10.1109/TIA.2004.824513
  2. Lee, S. H. and Chung, H. J., "Study on Lifetime Estimation of TFT-LCD Modules by Temperature Stress", J. of Korea Institute of Information Tech., Vol. 7, No. 5, pp. 1-7, 2009.
  3. Lee, J. W., "Design of a Heat Dissipation System for the 400kW IGBT Inverter", The Trans. of the KIPE, Vol. 9, No. 4, pp. 350-355, 2004.
  4. Ko, M. S., Lee, J. H., Oh, S. J., Cho, H. S. and Seo, T. B., "Cooling Performance of LED Head Lamp with Heat Sink and Cooling Fan", Trans. Korean Soc. Mech. Eng. B, Vol. 33, No. 12, pp. 947-951, 2009. DOI: http://dx.doi.org/10.3795/KSME-B.2009.33.12.947
  5. Kim, T. H., Do, K. H., Choi, B. I., Han, Y. S. and Kim, M. B., "Development of a Cooling System for a Concentrating Photovoltaic Module", Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 6, pp. 551-560, 2011. DOI: http://dx.doi.org/10.3795/KSME-B.2011.35.6.551
  6. Lee, K. W., Park, K. H., Rhi, S. H. and Yoo, S. Y., "Heat Pipe Heat Sink Development for Electronics Cooling", SAREK, Vol. 14, No. 8, pp. 664-670, 2002.
  7. Kim, J. S., Ha, S. J. and Kwon, Y. H., "A Study on Cooling Performance of Aluminium Heat Sink with Pulsating Heat Pipe", J. of the Korean Soc. of Marine Eng., Vol. 35, No. 8, pp. 1016-1021, 2011. DOI: http://dx.doi.org/10.5916/jkosme.2011.35.8.1016
  8. Riu, K. J., Park C. W., Kim, H. W. and Jang, C. S., "Cooling Characteristics of a Strip Fin Heat Sink", Trans. Korean Soc. Mech. Eng. B, Vol. 29, No. 1, pp. 16-26, 2005. DOI: http://dx.doi.org/10.3795/KSME-B.2005.29.1.016
  9. Kim, J. H., Yun, J. H. and Lee, C. S., "An Experimental Study on the Thermal Resistance Characteristics for Various Types of Heat Sinks", SAREK, Vol. 14, No. 8, pp. 676-682, 2002.
  10. Kim, K. J., "Numerical study on the thermal behavior of a natural convection hybrid fin heat sink", J. of the Korean Soc. of Marine Eng., Vol. 37, No. 1, pp. 35-39, 2013. DOI: http://dx.doi.org/10.5916/jkosme.2013.37.1.35
  11. Mohan, R. and Govindarajan, DR. P., "Thermal Analysis of CPU with variable Heat Sink Base Plate Thickness using CFD", International J. of the Computer, the Internet and Management, Vol. 18, No. 1, pp. 27-36, 2010.
  12. Kosar, A., "Effect of substrate thickness and material on heat transfer in microchannel heat sinks", Int'l J. of Thermal Sciences, Vol. 49, pp. 635-642, 2010. DOI: http://dx.doi.org/10.1016/j.ijthermalsci.2009.11.004
  13. Li, J. and Shi, Z. S., "3D numerical optimization of a heat sink base for electronics cooling", Int'l Communications in Heat and Mass Transfer, Vol. 39, pp. 204-208, 2012. DOI: http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.12.001
  14. White, Frank M., "Fluid mechanics", 5th ed., McGraw-Hill, 2003.
  15. Kim, J. H., and Lee, G. W., "Performance Evaluation of Swaged-and Extruded-type Heat Sinks Used in Inverter for Solar Power Generation", Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 10, pp. 933-940, 2013. DOI: http://dx.doi.org/10.3795/KSME-B.2013.37.10.933
  16. Incropera, F. P., DeWitt, D. P., Bergman, T. L. and Lavine, A. S., "Introduction to Heat Transfer," 5th ed., John Wiley and Sons, 2006.