DOI QR코드

DOI QR Code

비정질 강섬유로 보강된 철근콘크리트 인장부재의 균열거동

Cracking Behavior of RC Tension Members Reinforced with Amorphous Steel Fibers

  • 박경우 (산이건설(주) 기업부설연구소) ;
  • 이준석 (전남대학교 토목공학과) ;
  • 김우 (전남대학교 토목공학과) ;
  • 김대중 (전남도립대학교 토목환경과) ;
  • 이기열 (순천제일대학교 토목과)
  • Park, Kyoung-Woo (Research and Development Center, Sani construction Co.) ;
  • Lee, Jun-Seok (Dept. of Civil Engineering, Chonnam National University) ;
  • Kim, Woo (Dept. of Civil Engineering, Chonnam National University) ;
  • Kim, Dae-Joong (Dept. of Civil and Environmental Engineering, Jeonnam Provincial College) ;
  • Lee, Gi-Yeol (Dept. of Civil Engineering, Suncheon Jeil College)
  • 투고 : 2014.03.05
  • 심사 : 2014.04.15
  • 발행 : 2014.08.30

초록

이 논문은 비정질 강섬유 및 일반 강섬유로 보강된 철근콘크리트 인장실험체를 피복두께와 철근 직경의 비에 따라 각 6개씩 제작하여 직접인장실험을 수행하고, 그 결과로부터 강섬유로 보강된 철근콘크리트 인장부재의 균열거동을 분석한 것이다. 실험 결과에 따르면 비정질 강섬유와 일반 강섬유로 보강된 콘크리트 모두 쪼갬균열의 발생과 진행을 제어하는 성능이 양호하며, 특히 비정질 강섬유로 보강된 콘크리트는 피복두께가 철근 직경의 2배 이상이면 쪼갬균열이 발생하지 않았다. 균열간격은 두가지 강섬유로 보강된 실험체 모두에서 피복두께가 두꺼워짐에 따라 증가하였으며, 현행 설계기준에서 규정하는 최대 및 평균 균열간격 식으로 계산한 것보다 비교적 작게 측정되었다. 실험으로부터 측정된 자료로부터 평균균열간격을 이용하여 최대균열간격 및 최소균열간격을 예측할 수 있는 상관관계식을 제안하였다.

This paper presents the experimental results concentrically reinforced concrete tension members and compares cracking behavior of amorphous steel fiber and normal steel fiber reinforced concrete members. Two kind of steel fibers were included as a major experimental parameter together with the six cover thickness to bar diameter ratio ($c/d_b$). The presence of amorphous steel fibers effectively controlled the splitting cracks initation and propagation. In the amorphous steel fiber reinforced specimens, no splitting cracks were observed that becomes higher with cover thickness to bar diameter ratio is 2.0. Crack spacing of the each specimens reinforced with amorphous steel fibers and normal steel fibers becomes larger with the increase in cover thickness, and also measured maximum and average crack spacing are significantly smaller than current design code provision. Based on the measured crack spacings, a relationships for predicting the crack spacing is proposed using the measured average crack spacing in amorphous steel fiber reinforced concrete tension members.

키워드

참고문헌

  1. Deluce, J. R. and Vecchio, F. J., "Cracking Behavior of Steel Fiber-Reinforced Concrete Members Containing Conventional Reinforcement, ACI Structural Journal, Vol. 110, No. 3, 2013, pp. 481-490. (doi: http://dx.doi. org/ 10.14359/51685605)
  2. Abrishami, H. H. and Mitchell, D., "Influence of Steel Fibers on Tension Stiffening," ACI Structural Journal, Vol. 94, No. 6, 1997, pp. 769-776. (doi: http://dx.doi. org/10.14359/9736)
  3. Bischoff, P. H., "Tension Stiffening and Cracking of Steel Fiber-Reinforced Concrete," Journal of Materials in Civil Engineering, Vol. 15, No. 2, 2003, pp. 174-182. (doi: http://dx.doi.org/10.1061/(ASCE)0899-1561(2003)15: 2(174))
  4. Kwak, H. G., Na, C. K., Kim, S. W., and Kang, S. T., "Tension-Stiffening Model and Application of Ultra High Strength Fiber Reinforced Concrete," Journal of the Korean Society of Civil Engineers, Vol. 29, No. 4A, 2009, pp. 267-279 (in Korean).
  5. Kang, S. T., Hong, K. N., Han, S. H., and Kim, S. W., "The Effect of Fiber Volume Fraction on the Tension Softening Behavior of Steel Fiber-Reinforced Ultra High Strength Concrete," Journal of the Korea Concrete Institute, Vol. 21, No. 1, 2009, pp. 13-20 (in Korean). https://doi.org/10.4334/JKCI.2009.21.1.013
  6. ACI Committee 318, Building Code Requirement for Structural Concrete and Commentary (ACI 318-08), American Concrete Institute, 2008, 430 pp.
  7. Fib, fib Model Cde 2010 First Complete Draft-Volume 1, Federation Internationale du Beton, 2010, pp. 220-231.
  8. Yang, J. M., Yoon, S. H., Choi, S. J., and Kim, G. D., "Development and Application of Pig Iron Based Amorphous Fiber for Concrete Reinforcement," Magazine of the Korea Concrete Institute, Vol. 25, No. 4, 2013, pp. 38-41 (in Korean).
  9. Ganesan, N., Indira, P. V., and Sabeeba, M. V., "Tension Stiffening and Cracking of Hybrid Fiber- Reinforced Concrete," ACI Materials Journal, Vol. 110, No, 6, 2013, pp. 715-721. (doi: http://dx.doi.org/10.14359/51686341)
  10. Kim, Y. S., Crack Spacings Relationship and Tension Stiffening Effect on Axially Loaded Tension Members Reinforced with Amorphous Steel Fibers, Department of Architectural Engineering, Gwangju University, Master's Thesis, 2014 (in Korean).
  11. Kim, W., Lee, K. Y., and Yum, H. S., "Bond Characteristics and Cracking Behavior in High-Strength Concrete Tensile Members (1)," Journal of the Korean Society of Civil Engineers, Vol. 21, No. 5-A, 2001, pp. 687-698 (in Korean).
  12. CEB-FIP, CEB-FIP Model Code 1990, Comite Euro- International Du Beton, Paris, 1991, pp. 247-251.
  13. European Committee for Standardization, Eurocode 2-Design of Concrete Structures, European Committee for Standardization, Brussels, 2002, pp. 124-131.
  14. Korea Concrete Institute, Structural Concrete Design Code, Kimoondang Publishing Company, Seoul, 2012, pp. 300-302 (in Korean).
  15. CEB-FIP, CEB-FIP Model Code for Concrete Structures, Comite Euro-International Du Beton, 1978, 348 pp.
  16. Eibl, J., Concrete Structures Euro-Design Handbook, Emst & Sohn, 1994, pp. 244-249.
  17. Broms, B. B., "Crack Width and Crack Spacing in Reinforced Concrete Members," ACI Journal, Vol. 62, No. 10, 1965, pp. 1237-1256. (doi: http://dx.doi.org/10.14359/7742)
  18. Collins M. P. and Mitchell D., Prestressed Concrete Structures, Prentice Hall, 1996, pp. 152-154.
  19. Beeby, A. W., "Predicting of Crack Width in Hardened Concrete," Structural Engineer, Vol. 57A, No. 1, 1979, pp. 9-17.
  20. Broms, B. B. and Lutz, L. A., "Effect of Arrangement of Reinforcement on Crack Width and Spacing of Reinforced Concrete Members," ACI Journal, Vol. 62, No. 11, 1965, pp. 1395-1420. (doi: http://dx.doi.org/10.14359/ 7752)
  21. Rizkalla, S. H. and Hwang, L. S., "Crack Prediction for Members in Uniaxial Tension," ACI Journal, Vol. 81, No. 6, 1984, pp. 572-579. (doi: (http://dx.doi.org/10.14359/10702)

피인용 문헌

  1. Comparsions for Flexural Performance of Amorphous Steel Fiber Reinforced Concrete vol.24, pp.3, 2015, https://doi.org/10.7844/kirr.2015.24.3.66
  2. Flexural Performance and Cracking Resistance of Continuous Composite Slab using Micro Steel Fibers vol.27, pp.4, 2015, https://doi.org/10.4334/JKCI.2015.27.4.387
  3. Workability and Strength Properties of Hybrid Fiber Reinforced Concrete Using Amorphous Steel Fiber and Organic Fiber vol.6, pp.4, 2015, https://doi.org/10.11004/kosacs.2015.6.4.058
  4. Effect of Steel Fiber for Crack Control in Concrete Slabs with Steel Deck Plates vol.114, pp.4, 2017, https://doi.org/10.14359/51689448