DOI QR코드

DOI QR Code

Numerical Modeling of Circulation Characteristics in the Kwangyang Estuarine System

광양만 권역의 해수순환 수치모델 실험

  • Kim, Baek Jin (Department of Oceanography, College of Natural Sciences, Chungnam National University) ;
  • Ro, Young Jae (Department of Oceanography, College of Natural Sciences, Chungnam National University) ;
  • Jung, Kwang Young (Department of Oceanography, College of Natural Sciences, Chungnam National University) ;
  • Park, Kwang Soon (Korea Institute of Ocean Science & Technology)
  • Received : 2014.01.23
  • Accepted : 2014.08.27
  • Published : 2014.08.30

Abstract

The ECOM3D is used to study the circulation characteristics and density current from the Sumjin River runoff in the Kwangyang Estuarine System, South Sea, Korea. Annual mean value of $120m^3/s$ was imposed from the Sumjin River. The numerical model results in terms of tidal height, current and salinity field show satisfactory with skill scores over 90%. The current velocity showed the range of 1~2.5 m/s during flood and ebb phases. In particular, very strong flow occur in the narrow Channels of Noryang, Daebang and Changson exceeding over 2.0 m/s. The tidal residual currents in the various locations in the Kwangyang Estuary showed the range of 1~21 cm/s, The density-driven current through the Yeosu and Noryang Channels are about 12 cm/s and 4 cm/s, respectively. The current path through the Yeosu Channel is deflected toward west Bank. Based on budget analysis of the volume flux, the volume flux through the Yeosu Channel and the Noryang Channel were estimated to be 97.4 and $22.1m^3/s$ accounting for the 81.5% and 18.5% of total flux, respectively.

광양만 권역의 해수 순환 양상과 섬진강 하천수 유입으로 발생하는 밀도류 이동 양상을 3차원 수치모델링 실험을 통해 연구하였다. $120m^3/s$의 섬진강 연평균 유량을 부과하여 실험을 진행하였다. 조위와 유속장, 염분장에 대해 각각 스킬분석(skill analysis)을 이용하여 모델을 검증하였으며, 그 결과 대부분 90%가 넘는 재현율을 보였다. 모델은 조류, 담수유입에 의한 염분장의 변화를 잘 재현하였다. 창낙조시의 유속장의 분포는 1~2.5 m/s의 범위를 보였다. 특히 노량과 대방, 그리고 창선수로에서 2.0 m/s 이상의 강한 흐름이 발생하는 것으로 나타났다. 지형적 요인에 의해 좌우되는 조석잔차류의 크기는 1~21 cm/s의 범위를 보였고, 섬진강 담수 유입으로 인해 형성된 표층의 밀도류는 여수해만으로 진행하는 12 cm/s의 이하의 남향류와 노량수로로 진행하는 4 cm/s 이하의 동향류가 발생한다. 특히 여수해만에서의 밀도류 흐름은 서쪽 해안에 편향되어 남하하는 양상을 보였다. 모델 내 경계면에서의 체적 수송량과 밀도류 분포를 분석한 결과, 평수기시 섬진강으로부터 광양만 권역에 유입된 담수는 $97.4m^3/s$ (81.5%)가 여수해만으로 유입되며 $22.1m^3/s$ (18.5%)가 진주만으로 유입되는 양상을 보였다.

Keywords

References

  1. Blumberg, A. and Mellor, G.(1987). A description of three demensinal coastal ocean model. In: Heaps N (ed) Three demensional coastal ocean model. American Geophysical Union, Washington DC.
  2. Blumberg, A.(2002). A primer for ECOMSED, Hydroqual Inc. 188pp.
  3. Byun, C.S.(2011). Prediction of marine environment changes around the Nakdong River during summer. Master's Thesis, Korea Maritime University (in Korean).
  4. Guo, X. and Valle-Levinson, A.(2007). Tidal effects on estuarine circulation and outflow plume in the Chesapeake Bay, Cont Shelf Res, 27, 20-42. https://doi.org/10.1016/j.csr.2006.08.009
  5. Guo, X. and Valle-Levinson, A.(2008). Wind effects on the lateral structure of density-driven circulation in Chesapeake Bay, Cont Shelf Res, 28, 2450-2471. https://doi.org/10.1016/j.csr.2008.06.008
  6. Han, S.D.(1995). Evaluation of mean tidal currents at Kwangyang and Chinju Bay, Connected into Noryang Channel. Theses Collection Vol. 13, 161-170.
  7. Jeong, J.H.(2006). Simulation study on the temporal and spatial variations of hydrodynamics and environmental conditions in Gyeonggi Bay using a three-dimensional numerical model. Ph.D. Dissertation, Kwangwon University (in Korean).
  8. Ji, Z., Hu, G., Shen, J., Wan, Y.(2007). Three-dimensional modeling of hydrodynamic processes in the St. Lucie Estuary, Estuarine Coastal and Shelf Science, 73, 188-200. https://doi.org/10.1016/j.ecss.2006.12.016
  9. Ji, X., Sheng, J., Tang, L., Liu, D. and Yang, X.(2011). Process study of circulation in the Pearl River Estuary and adjacent coastal waters in the wet season using a triply-nested circulation model, Ocean Modeling, 38, 138-160. https://doi.org/10.1016/j.ocemod.2011.02.010
  10. Jung, K.Y., Ro, Y.J.(2010). Stratification and destratification processes in the Kangjin Bay, South Sea, Korea. Journal of the Korean Society of Oceanography, 15(3), 97-109.
  11. Jung, K.Y.(2007). Three-dimensional numerical modeling of tidal, wind-driven and density currents in the Kangjin Bay, South Sea, Korea, Master's Thesis, Chungnam National University (in Korean).
  12. Jung, K.Y., Ro, Y.J., Kim, B.J., Park, K.S.(2012). Model trajectory simulation for the behavior of the Namgang Dam water in the Kangjin Bay, South Sea, Korea. Journal of Korean Society of Coastal and Ocean Engineers, 24(2), 97-106 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.2.097
  13. Kang, Y.S., Chae, Y.K., Lee, H.R.(2011). Variation of density stratification due to fresh water discharge in the Kwangyang Bay and Jinju Bay, Journal of Korean Society of Coastal and Ocean Engineers, 23(1), 126-137 (in Korean). https://doi.org/10.9765/KSCOE.2011.23.1.126
  14. Kim, C.K., Lee, J.T., Jang, H.S.(2010). Water circulation structure in Chinju Bay of Korea. Journal of Korean Society of Coastal and Ocean Engineers, 22(4), 215-223 (in Korean).
  15. Kwak, G.I.(2008). Temporal and spatial mixing characteristics of Seomjin River discharges using a three-dimensional numerical model. Master's Thesis, Chonnam National University (in Korean).
  16. Lee, J.C., Kim, J.C. and Park, M.W.(2006) Observations of current in the Northeastern Gwangyang bay. Journal of the Korean Society of Oceanography, 11(4), 136-142.
  17. Lee, J.C., Kim, J.C.(2007). Current structure and variability in Gwangyang bay in spring 2006. Journal of the Korean Society of Oceanography, 12(3), 219-224.
  18. MacCready, P., Banas, N.S., Hickey, B.M., Dever, E.P. and Liu, Y.(2009). A model study of tide- and wind-induced mixing in the Columbia River Estuary and plume. Cont Shelf Res, 29(1), 278-291. https://doi.org/10.1016/j.csr.2008.03.015
  19. Martin, J. and McCutcheon, S.C.(1999). Hydrodynamics and Transport for Water Quality Modeling. Lewis Publishers. 794P
  20. Matsumoto, K., Takanezawa, T. and Ooe, M.(2000). Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydro-dynamical model; A global model and regional model around Japan, Oceanography in Japan, 56, 567-581. https://doi.org/10.1023/A:1011157212596
  21. Pawlowicz, R., Beardsley, B., Lentz, S.(2002). Classical harmonic analysis including error estimates in MATLAB using T_TIDE, Computers and Geosciences, 28, 929-937. https://doi.org/10.1016/S0098-3004(02)00013-4
  22. Park, K., Jung, H.S., Kim, H.S. and Ahn, S,M.(2005). Threedimensional hydrodynamic -eutrophication model (HEM-3D): application to Kwang-Yang Bay, Korea, Marine Environmental Resarch 60, 171-193. https://doi.org/10.1016/j.marenvres.2004.10.003
  23. Pritchard, D.W.(1952). Salinity distribution and circulation in the Chesapeake Bay estuarine system. Journal of Marine Research 15, 33-42.
  24. Ro, Y.J.(2007). Tidal and Sub-tidal Current Characteristics in the Kangjin Bay, South Sea, Korea, Ocean Sci J, 42(1), 19-30. https://doi.org/10.1007/BF03020907
  25. Ro, Y.J., Jun, W.S., Jung, K.Y. and Eom, H.M.(2007). Numerical Modeling of Tide and Tidal Current in the Kangjin Bay, South Sea, Korea, Ocean Sci J, 42(3), 153-163. https://doi.org/10.1007/BF03020919
  26. Ro, Y.J., Jung, K.Y.(2010). Impact of the Dam Water Discharge on the Circulation System in the Kangjin Bay, South Sea, Korea, Ocean Sci J, 45(1), 7-25. https://doi.org/10.1007/s12601-010-0002-7
  27. Shin, E.J., Lee, S.H., Choi, H.Y.(2002). Numerical model study for structure and distribution of the Keum River plume. Journal of the Korean Society of Oceanography, 7(3), 157-170.
  28. Wang, Q., Guo, X. and Takeoka, H.(2008). Seasonal variations of the Yellow River plume in the Bohai Sea: A Model study, Journal of Geophysical Research, 113, C08046.
  29. Willmott, C.J.(1981). On the Validation of models. Physical Geography, 2(2), 184-194.
  30. Youngsan River Flood Control Office, Annual report of hydrologic investigation in Korea. http://www.yeongsanriver.go.kr/phps/menu/menu.php?S=S01&M=060101000000

Cited by

  1. Trophic Structures of Two Contrasting Estuarine Ecosystems With and without a Dike on the Temperate Coast of Korea as Determined by Stable Isotopes pp.1559-2731, 2019, https://doi.org/10.1007/s12237-019-00522-4