DOI QR코드

DOI QR Code

Characteristics and osteogenic effect of zirconia porous scaffold coated with ${\beta}$-TCP/HA

  • Song, Young-Gyun (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Cho, In-Ho (Department of Prosthodontics, College of Dentistry, Dankook University)
  • 투고 : 2014.01.17
  • 심사 : 2014.06.30
  • 발행 : 2014.08.29

초록

PURPOSE. The purpose of this study was to evaluate the properties of a porous zirconia scaffold coated with bioactive materials and compare the in vitro cellular behavior of MC3T3-E1 preosteoblastic cells to titanium and zirconia disks and porous zirconia scaffolds. MATERIALS AND METHODS. Titanium and zirconia disks were prepared. A porous zirconia scaffold was fabricated with an open cell polyurethane disk foam template. The porous zirconia scaffolds were coated with ${\beta}$-TCP, HA and a compound of ${\beta}$-TCP and HA (BCP). The characteristics of the specimens were evaluated using scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDX), and x-ray diffractometry (XRD). The dissolution tests were analyzed by an inductively coupled plasma spectrometer (ICP). The osteogenic effect of MC3T3-E1 cells was assessed via cell counting and reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS. The EDX profiles showed the substrate of zirconia, which was surrounded by the Ca-P layer. In the dissolution test, dissolved $Ca^{2+}$ ions were observed in the following decreasing order; ${\beta}$-TCP > BCP > HA (P<.05). In the cellular experiments, the cell proliferation on titanium disks appeared significantly lower in comparison to the other groups after 5 days (P<.05). The zirconia scaffolds had greater values than the zirconia disks (P<.05). The mRNA level of osteocalcin was highest on the non-coated zirconia scaffolds after 7 days. CONCLUSION. Zirconia had greater osteoblast cell activity than titanium. The interconnecting pores of the zirconia scaffolds showed enhanced proliferation and cell differentiation. The activity of osteoblast was more affected by microstructure than by coating materials.

키워드

참고문헌

  1. Hench LL, Polak JM. Third-generation biomedical materials. Science 2002;295:1014-7. https://doi.org/10.1126/science.1067404
  2. Fransson C, Lekholm U, Jemt T, Berglundh T. Prevalence of subjects with progressive bone loss at implants. Clin Oral Implants Res 2005;16:440-6. https://doi.org/10.1111/j.1600-0501.2005.01137.x
  3. Klinge B. Peri-implant marginal bone loss: an academic controversy or a clinical challenge? Eur J Oral Implantol 2012;5: S13-9.
  4. Kim YK, Kim SG, Yun PY, Yeo IS, Jin SC, Oh JS, Kim HJ, Yu SK, Lee SY, Kim JS, Um IW, Jeong MA, Kim GW. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials. Oral Surg Oral Med Oral Pathol Oral Radiol 2014;117:e39-45. https://doi.org/10.1016/j.oooo.2012.04.018
  5. Bae JH, Kim YK, Kim SG, Yun PY, Kim JS. Sinus bone graft using new alloplastic bone graft material (Osteon)-II: clinical evaluation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:e14-20. https://doi.org/10.1016/j.tripleo.2009.10.047
  6. Dalkyz M, Ozcan A, Yapar M, Gokay N, Yuncu M. Evaluation of the effects of different biomaterials on bone defects. Implant Dent 2000;9:226-35. https://doi.org/10.1097/00008505-200009030-00008
  7. Carotenuto G, Spagnuolo G, Ambrosio L, Nicolais L. Macroporous hydroxyapatite as alloplastic material for dental applications. J Mater Sci Mater Med 1999;10:671-6. https://doi.org/10.1023/A:1008952111545
  8. Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, Proust JP. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res 2002;63:408-12. https://doi.org/10.1002/jbm.10259
  9. Chao SY, Poon CK. Histologic study of tissue response to implanted hydroxylapatite in two patients. J Oral Maxillofac Surg 1987;45:359-62. https://doi.org/10.1016/0278-2391(87)90361-2
  10. Frame JW, Browne RM, Brady CL. Hydroxyapatite as a bone substitute in the jaws. Biomaterials 1981;2:19-22. https://doi.org/10.1016/0142-9612(81)90082-X
  11. Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res 1989;23:883-94. https://doi.org/10.1002/jbm.820230806
  12. Nery EB, LeGeros RZ, Lynch KL, Lee K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta TCP in periodontal osseous defects. J Periodontol. 1992;63:729-35. https://doi.org/10.1902/jop.1992.63.9.729
  13. Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 1998;19:133-9. https://doi.org/10.1016/S0142-9612(97)00180-4
  14. Daculsi G, Passuti N, Martin S, Deudon C, Legeros RZ, Raher S. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 1990;24:379-96. https://doi.org/10.1002/jbm.820240309
  15. Jiang G, Shi D. Coating of hydroxyapatite on highly porous $Al_2O_3$ substrate for bone substitutes. J Biomed Mater Res 1998;43:77-81. https://doi.org/10.1002/(SICI)1097-4636(199821)43:1<77::AID-JBM9>3.0.CO;2-J
  16. Pae A, Lee H, Kim HS, Baik J, Woo YH. Cellular attachment and gene expression of osteoblast-like cells on zirconia ceramic surfaces. J Korean Acad Prosthodont 2008;46:227-37.
  17. Guazzato M, Quach L, Albakry M, Swain MV. Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. J Dent 2005;33:9-18. https://doi.org/10.1016/j.jdent.2004.07.001
  18. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  19. Piconi C, Burger W, Richter HG, Cittadini A, Maccauro G, Covacci V, Bruzzese N, Ricci GA, Marmo E. Y-TZP ceramics for artificial joint replacements. Biomaterials 1998;19:1489-94. https://doi.org/10.1016/S0142-9612(98)00064-7
  20. Sollazzo V, Pezzetti F, Scarano A, Piattelli A, Bignozzi CA, Massari L, Brunelli G, Carinci F. Zirconium oxide coating improves implant osseointegration in vivo. Dent Mater 2008;24:357-61. https://doi.org/10.1016/j.dental.2007.06.003
  21. Schultze-Mosgau S, Schliephake H, Radespiel-Troger M, Neukam FW. Osseointegration of endodontic endosseous cones: zirconium oxide vs titanium. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000;89:91-8. https://doi.org/10.1016/S1079-2104(00)80022-0
  22. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1:11-25.
  23. Andreiotelli M, Wenz HJ, Kohal RJ. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin Oral Implants Res 2009;20:32-47. https://doi.org/10.1111/j.1600-0501.2009.01785.x
  24. McKinney RV Jr, Steflik DE, Koth DL. The biologic response to the single-crystal sapphire endosteal dental implant: scanning electron microscopic observations. J Prosthet Dent 1984;51:372-9. https://doi.org/10.1016/0022-3913(84)90225-7
  25. Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent 2009;4:130-51.
  26. Wohlfahrt JC, Lyngstadaas SP, Ronold HJ, Saxegaard E, Ellingsen JE, Karlsson S, Aass AM. Porous titanium granules in the surgical treatment of peri-implant osseous defects: a randomized clinical trial. Int J Oral Maxillofac Implants 2012;27:401-10.
  27. Steinemann SG. Titanium--the material of choice? Periodontol 2000 1998;17:7-21. https://doi.org/10.1111/j.1600-0757.1998.tb00119.x
  28. Langhoff JD, Voelter K, Scharnweber D, Schnabelrauch M, Schlottig F, Hefti T, Kalchofner K, Nuss K, von Rechenberg B. Comparison of chemically and pharmaceutically modified titanium and zirconia implant surfaces in dentistry: a study in sheep. Int J Oral Maxillofac Surg 2008;37:1125-32. https://doi.org/10.1016/j.ijom.2008.09.008
  29. Itala AI, Ylanen HO, Ekholm C, Karlsson KH, Aro HT. Pore diameter of more than 100 microm is not requisite for bone ingrowth in rabbits. J Biomed Mater Res 2001;58:679-83. https://doi.org/10.1002/jbm.1069
  30. Aboushelib MN, Salem NA, Taleb AL, El Moniem NM. Influence of surface nano-roughness on osseointegration of zirconia implants in rabbit femur heads using selective infiltration etching technique. J Oral Implantol 2013;39:583-90. https://doi.org/10.1563/AAID-JOI-D-11-00075
  31. Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 1983;96:191-8. https://doi.org/10.1083/jcb.96.1.191
  32. Wang D, Christensen K, Chawla K, Xiao G, Krebsbach PH, Franceschi RT. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/ mineralization potential. J Bone Miner Res 1999;14:893-903. https://doi.org/10.1359/jbmr.1999.14.6.893
  33. Pae A, Lee H, Kim HS, Kwon YD, Woo YH. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces. Biomed Mater 2009;4:025005. https://doi.org/10.1088/1748-6041/4/2/025005
  34. Tai G, Christodoulou I, Bishop AE, Polak JM. Use of green fluorescent fusion protein to track activation of the transcription factor osterix during early osteoblast differentiation. Biochem Biophys Res Commun 2005;333:1116-22. https://doi.org/10.1016/j.bbrc.2005.05.195
  35. Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem 2003;88:446-54. https://doi.org/10.1002/jcb.10369
  36. Barrere F, van der Valk CM, Dalmeijer RA, Meijer G, van Blitterswijk CA, de Groot K, Layrolle P. Osteogenecity of octacalcium phosphate coatings applied on porous metal implants J Biomed Mater Res A 2003;66:779-88.

피인용 문헌

  1. Characterization of human periodontal ligament cells cultured on three-dimensional biphasic calcium phosphate scaffolds in the presence and absence of L-ascorbic acid, dexamethasone and β-glycerophosphate in vitro vol.10, pp.4, 2015, https://doi.org/10.3892/etm.2015.2706
  2. Combinatorial effect of stem cells derived from mandible and recombinant human bone morphogenetic protein-2 vol.12, pp.5, 2015, https://doi.org/10.1007/s13770-014-0038-3
  3. Effect of Porosity of Alumina and Zirconia Ceramics toward Pre-Osteoblast Response vol.3, pp.2296-4185, 2015, https://doi.org/10.3389/fbioe.2015.00175
  4. for bone tissue applications vol.115, pp.4, 2018, https://doi.org/10.1002/bit.26514
  5. Comparative study of new bone formation capability of zirconia bone graft material in rabbit calvarial vol.10, pp.3, 2018, https://doi.org/10.4047/jap.2018.10.3.167
  6. Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles vol.3, pp.None, 2014, https://doi.org/10.1186/s40729-017-0082-6
  7. Three-Dimensional Zirconia-Based Scaffolds for Load-Bearing Bone-Regeneration Applications: Prospects and Challenges vol.14, pp.12, 2021, https://doi.org/10.3390/ma14123207