DOI QR코드

DOI QR Code

TAp73 and ΔNp73 Have Opposing Roles in 5-aza-2'-Deoxycytidine-Induced Apoptosis in Breast Cancer Cells

  • Lai, Jing (Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University) ;
  • Yang, Fang (Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University) ;
  • Zhang, Wenwen (Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University) ;
  • Wang, Yanru (Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University) ;
  • Xu, Jing (Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University) ;
  • Song, Wei (Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University) ;
  • Huang, Guichun (Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University) ;
  • Gu, Jun (Department of General Surgery, Jinling Hospital, Medical School of Nanjing University) ;
  • Guan, Xiaoxiang (Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University)
  • Received : 2014.06.09
  • Accepted : 2014.07.30
  • Published : 2014.08.31

Abstract

The p73 gene contains an extrinsic P1 promoter and an intrinsic P2 promoter, controlling the transcription of the pro-apoptotic TAp73 isoform and the anti-apoptotic ${\Delta}Np73$ isoform, respectively. The DNA methylation status of both promoters act equally in the epigenetic transcriptional regulation of their relevant isoforms. The aim of this study was to analyze the different effects of these p73 isoforms in 5-aza-2'-deoxycytidine (5-aza-dC)-induced apoptosis in breast cancer cells. We investigated the effects of the DNA demethylation agent, 5-aza-dC, on the T-47D breast cancer cell line, and evaluated the methylation status of the p73 promoters and expression of TAp73 and ${\Delta}Np73$. Furthermore, we assessed the expression of p53 and p73 isoforms in 5-aza-dC-treated T-47D cells and p53 knockout cells. 5-aza-dC induced significant anti-tumor effects in T-47D cells, including inhibition of cell viability, G1 phase arrest and apoptosis. This was associated with p73 promoter demethylation and a concomitant increase in TAp73 mRNA and protein expression. In contrast, the methylation status of promoter P2 was not associated with ${\Delta}Np73$ mRNA or protein levels. Furthermore, demethylation of P2 failed to inhibit the expression of ${\Delta}Np73$ with 5-aza-dC in the p53 knockdown cell model. Our study suggests that demethylation of the P1 and P2 promoters has opposite effects on the expression of p73 isoforms, namely up-regulation of TAp73 and down-regulation of ${\Delta}Np73$. We also demonstrate that p53 likely contributes to 5-aza-dC-induced ${\Delta}Np73$ transcriptional inactivation in breast cancer cells.

Keywords

References

  1. Daskalos, A., Nikolaidis, G., Xinarianos, G., Savvari, P., Cassidy, A., Zakopoulou, R., Kotsinas, A., Gorgoulis, V., Field, J.K., and Liloglou, T. (2009). Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int. J. Cancer 124, 81-87. https://doi.org/10.1002/ijc.23849
  2. Daskalos, A., Logotheti, S., Markopoulou, S., Xinarianos, G., Gosney, J.R., Kastania, A.N., Zoumpourlis, V., Field, J.K., and Liloglou, T. (2011). Global DNA hypomethylation-induced DeltaNp73 transcriptional activation in non-small cell lung cancer. Cancer Lett. 300, 79-86. https://doi.org/10.1016/j.canlet.2010.09.009
  3. Gonzalez-Gomez, P., Bello, M.J., Alonso, M.E., Aminoso, C., Lopez-Marin, I., De Campos, J.M., Isla, A., Gutierrez, M., and Rey, J.A. (2004). Promoter methylation status of multiple genes in brain metastases of solid tumors. Int. J. Mol. Med. 13, 93-98.
  4. Gonzalez-Cano, L., Hillje, A.L., Fuertes-Alvarez, S., Marques, M.M., Blanch, A., Ian, R.W., Irwin, M.S., Schwamborn, J.C., and Marin, M.C. (2013). Regulatory feedback loop between TP73 and TRIM32. Cell Death Dis. 4, e704. https://doi.org/10.1038/cddis.2013.224
  5. Gore, S.D. (2005). Combination therapy with DNA methyltransferase inhibitors in hematologic malignancies. Nat. Clin. Pract. Oncol. 2 Suppl 1, S30-35. https://doi.org/10.1038/ncponc0346
  6. Griffiths, E.A., Gore, S.D., Hooker, C.M., Mohammad, H.P., McDevitt, M.A., Smith, B.D., Karp, J.E., Herman, J.G., and Carraway, H.E. (2010). Epigenetic differences in cytogenetically normal versus abnormal acute myeloid leukemia. Epigenetics 5, 590-600. https://doi.org/10.4161/epi.5.7.12558
  7. Grob, T.J., Novak, U., Maisse, C., Barcaroli, D., Luthi, A.U., Pirnia, F., Hugli, B., Graber, H.U., De Laurenzi, V., Fey, M.F., et al. (2001). Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ. 8, 1213-1223. https://doi.org/10.1038/sj.cdd.4400962
  8. Han, L.L., Hou, L., Zhou, M.J., Ma, Z.L., Lin, D.L., Wu, L., and Ge, Y.L. (2013). Aberrant NDRG1 methylation associated with its decreased expression and clinicopathological significance in breast cancer. J. Biomed. Sci. 20, 52. https://doi.org/10.1186/1423-0127-20-52
  9. Hassler, M.R., Klisaroska, A., Kollmann, K., Steiner, I., Bilban, M., Schiefer, A.-I., Sexl, V., and Egger, G. (2012). Antineoplastic activity of the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine in anaplastic large cell lymphoma. Biochimie 94, 2297-2307. https://doi.org/10.1016/j.biochi.2012.05.029
  10. Hatzimichael, E., Benetatos, L., Dasoula, A., Dranitsaris, G., Tsiara, S., Georgiou, I., Syrrou, M., Stebbing, J., Coley, H.M., Crook, T., et al. (2009). Absence of methylation-dependent transcriptional silencing in TP73 irrespective of the methylation status of the CDKN2A CpG island in plasma cell neoplasia. Leuk. Res. 33, 1272-1275. https://doi.org/10.1016/j.leukres.2009.04.009
  11. Holliday, R., and Pugh, J.E. (1975). DNA modification mechanisms and gene activity during development. Science 187, 226-232. https://doi.org/10.1126/science.1111098
  12. Ikawa, S., Nakagawara, A., and Ikawa, Y. (1999). p53 family genes: structural comparison, expression and mutation. Cell Death Differ. 6, 1154-1161. https://doi.org/10.1038/sj.cdd.4400631
  13. Ishimoto, O., Kawahara, C., Enjo, K., Obinata, M., Nukiwa, T., and Ikawa, S. (2002). Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73. Cancer Res. 62, 636-641.
  14. Jha, A.K., Nikbakht, M., Jain, V., Sehgal, A., Capalash, N., and Kaur, J. (2012). Promoter hypermethylation of p73 and p53 genes in cervical cancer patients among north Indian population. Mol. Biol. Rep. 39, 9145-9157. https://doi.org/10.1007/s11033-012-1787-5
  15. Jones, P.A., and Baylin, S.B. (2002). The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415-428.
  16. Kartasheva, N.N., Contente, A., Lenz-Stoppler, C., Roth, J., and Dobbelstein, M. (2002). p53 induces the expression of its antagonist p73 Delta N, establishing an autoregulatory feedback loop. Oncogene 21, 4715-4727. https://doi.org/10.1038/sj.onc.1205584
  17. Kong, W.J., Zhang, S., Guo, C., Wang, Y., and Zhang, D. (2005). Methylation-associated silencing of death-associated protein kinase gene in laryngeal squamous cell cancer. Laryngoscope 115, 1395-1401. https://doi.org/10.1097/01.MLG.0000166708.23673.3A
  18. Melino, G., De Laurenzi, V., and Vousden, K.H. (2002). p73: Friend or foe in tumorigenesis. Nat. Rev. Cancer 2, 605-615. https://doi.org/10.1038/nrc861
  19. Moll, U.M., and Slade, N. (2004). p63 and p73: roles in development and tumor formation. Mol. Cancer Res. 2, 371-386.
  20. Murray-Zmijewski, F., Lane, D.P., and Bourdon, J.C. (2006). p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 13, 962-972. https://doi.org/10.1038/sj.cdd.4401914
  21. Nakagawa, T., Takahashi, M., Ozaki, T., Watanabe Ki, K., Todo, S., Mizuguchi, H., Hayakawa, T., and Nakagawara, A. (2002). Autoinhibitory regulation of p73 by Delta Np73 to modulate cell survival and death through a p73-specific target element within the Delta Np73 promoter. Mol. Cell. Biol. 22, 2575-2585. https://doi.org/10.1128/MCB.22.8.2575-2585.2002
  22. Nakagawa, T., Takahashi, M., Ozaki, T., Watanabe, K., Hayashi, S., Hosoda, M., Todo, S., and Nakagawara, A. (2003). Negative autoregulation of p73 and p53 by DeltaNp73 in regulating differentiation and survival of human neuroblastoma cells. Cancer Lett. 197, 105-109. https://doi.org/10.1016/S0304-3835(03)00090-9
  23. Ozaki, T., and Nakagawara, A. (2005). p73, a sophisticated p53 family member in the cancer world. Cancer Sci. 96, 729-737. https://doi.org/10.1111/j.1349-7006.2005.00116.x
  24. Pozniak, C.D., Radinovic, S., Yang, A., McKeon, F., Kaplan, D.R., and Miller, F.D. (2000). An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science 289, 304-306. https://doi.org/10.1126/science.289.5477.304
  25. Ramadan, S., Terrinoni, A., Catani, M.V., Sayan, A.E., Knight, R.A., Mueller, M., Krammer, P.H., Melino, G., and Candi, E. (2005). p73 induces apoptosis by different mechanisms. Biochem. Biophys. Res. Commun. 331, 713-717. https://doi.org/10.1016/j.bbrc.2005.03.156
  26. Robertson, K.D. (2005). DNA methylation and human disease. Nat. Rev. Genet. 6, 597-610.
  27. Rossi, M., Sayan, A.E., Terrinoni, A., Melino, G., and Knight, R.A. (2004). Mechanism of induction of apoptosis by p73 and its relevance to neuroblastoma biology. Ann. N Y Acad. Sci. 1028, 143-149. https://doi.org/10.1196/annals.1322.015
  28. Sahu, G.R., and Das, B.R. (2005). Alteration of p73 in pediatric de novo acute lymphoblastic leukemia. Biochem. Biophys. Res. Commun. 327, 750-755. https://doi.org/10.1016/j.bbrc.2004.12.064
  29. Sato, H., Oka, T., Shinnou, Y., Kondo, T., Washio, K., Takano, M., Takata, K., Morito, T., Huang, X., Tamura, M., et al. (2010). Multistep aberrant CpG island hyper-methylation is associated with the progression of adult T-cell leukemia/lymphoma. Am. J. Pathol. 176, 402-415. https://doi.org/10.2353/ajpath.2010.090236
  30. Schmelz, K., Wagner, M., Dorken, B., and Tamm, I. (2005). 5-Aza-2'-deoxycytidine induces p21WAF expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukemia. Int. J. Cancer 114, 683-695. https://doi.org/10.1002/ijc.20797
  31. Schubeler, D., Lorincz, M.C., Cimbora, D.M., Telling, A., Feng, Y.Q., Bouhassira, E.E., and Groudine, M. (2000). Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol. Cell. Biol. 20, 9103-9112. https://doi.org/10.1128/MCB.20.24.9103-9112.2000
  32. Stiewe, T., Zimmermann, S., Frilling, A., Esche, H., and Putzer, B.M. (2002). Transactivation-deficient DeltaTA-p73 acts as an oncogene. Cancer Res. 62, 3598-3602.
  33. Tomasini, R., Tsuchihara, K., Wilhelm, M., Fujitani, M., Rufini, A., Cheung, C.C., Khan, F., Itie-Youten, A., Wakeham, A., Tsao, M.S., et al. (2008). TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 22, 2677-2691. https://doi.org/10.1101/gad.1695308
  34. Tophkhane, C., Yang, S.H., Jiang, Y., Ma, Z., Subramaniam, D., Anant, S., Yogosawa, S., Sakai, T., Liu, W.G., Edgerton, S., et al. (2012). p53 inactivation upregulates p73 expression through E2F-1 mediated transcription. PLoS One 7, e43564. https://doi.org/10.1371/journal.pone.0043564
  35. Tosi, G.M., Trimarchi, C., Macaluso, M., La Sala, D., Ciccodicola, A., Lazzi, S., Massaro-Giordano, M., Caporossi, A., Giordano, A., and Cinti, C. (2005). Genetic and epigenetic alterations of RB2/p130 tumor suppressor gene in human sporadic retinoblastoma: implications for pathogenesis and therapeutic approach. Oncogene 24, 5827-5836. https://doi.org/10.1038/sj.onc.1208630
  36. Ushiku, T., Chong, J.M., Uozaki, H., Hino, R., Chang, M.S., Sudo, M., Rani, B.R., Sakuma, K., Nagai, H., and Fukayama, M. (2007). p73 gene promoter methylation in Epstein-Barr virus-associated gastric carcinoma. Int. J. Cancer 120, 60-66. https://doi.org/10.1002/ijc.22275
  37. Willis, A.C., Pipes, T., Zhu, J., and Chen, X. (2003). p73 can suppress the proliferation of cells that express mutant p53. Oncogene 22, 5481-5495. https://doi.org/10.1038/sj.onc.1206505
  38. Yu, J., Baron, V., Mercola, D., Mustelin, T., and Adamson, E.D. (2007). A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death Differ. 14, 436-446. https://doi.org/10.1038/sj.cdd.4402029

Cited by

  1. Evaluation of promoter hypomethylation and expression ofp73as a diagnostic and prognostic biomarker in Wilms’ tumour vol.69, pp.1, 2016, https://doi.org/10.1136/jclinpath-2015-203150
  2. A novel apoptosis-inducing mechanism of 5-aza-2′-deoxycitidine in melanoma cells: Demethylation of TNF-α and activation of FOXO1 vol.369, pp.2, 2015, https://doi.org/10.1016/j.canlet.2015.08.023
  3. Diallyl disulfide attenuated carbon ion irradiation-induced apoptosis in mouse testis through changing the ratio of Tap73/ΔNp73 via mitochondrial pathway vol.5, pp.1, 2015, https://doi.org/10.1038/srep16020
  4. 5-Azacytidine suppresses EC9706 cell proliferation and metastasis by upregulating the expression of SOX17 and CDH1 vol.38, pp.4, 2016, https://doi.org/10.3892/ijmm.2016.2704
  5. DNA damage triggers tubular endoplasmic reticulum extension to promote apoptosis by facilitating ER-mitochondria signaling vol.28, pp.8, 2018, https://doi.org/10.1038/s41422-018-0065-z
  6. TP73 DNA methylation and upregulation of ΔNp73 are associated with an adverse prognosis in breast cancer vol.71, pp.1, 2014, https://doi.org/10.1136/jclinpath-2017-204499
  7. Effects of 5‐Aza‐2'‐deoxycytidine on hormone secretion and epigenetic regulation in sika deer ovarian granulosa cells vol.56, pp.2, 2021, https://doi.org/10.1111/rda.13873
  8. Natural Bioactive Compounds Targeting Epigenetic Pathways in Cancer: A Review on Alkaloids, Terpenoids, Quinones, and Isothiocyanates vol.13, pp.11, 2014, https://doi.org/10.3390/nu13113714