DOI QR코드

DOI QR Code

Algorithms for Computing Inverses in Finite Fields using Special ONBs

특수한 정규기저를 이용한 유한체위에서의 역원 계산 알고리즘에 관한 연구

  • 김용태 (광주교육대학교 수학교육과)
  • Received : 2014.06.05
  • Accepted : 2014.08.11
  • Published : 2014.08.31

Abstract

Since the computation of a multiplicative inverse using MONB includes many squarings and thus calculating inverse is expensive, we, in this paper, propose a low cost inverse algorithm requiring $nb(2^nm-1)+w(2^nm-1)-2$ multiplications and $2^n-1$ squarings to compute an inverse in $GF(2^{2^nm})^*$ using special normal basis over $GF(2^{2^n})$, and give some implementation results using the algorithm and, show that the timing results of our implementation is faster than that of Itoh et al.'s method.

유한체 연산에서 MONB를 사용하면 곱셈 역원 계산시에 대량의 제곱계산이 필요하므로 역원을 계산하는 데에 긴 시간이 필요하게 된다. 이에 본 논문에서는 바탕체 $GF(2^{2n})$ 위의 확대체 $GF(2^{2^nm})^*$에서 특수한 정규기저를 사용하여 역원을 구하는 저 비용의 알고리즘을 제안한다. 제안하는 알고리즘을 사용하면 곱셈 역원 계산에는 $nb(2^nm-1)+w(2^nm-1)-2$번의 곱셈과 $2^n-1$번의 제곱연산이 소요되며, H/W에서 구현한 결과 Itoh 등의 방법 보다 곱셈역원 계산속도가 빠르게 나타났다.

Keywords

References

  1. N. Koblitz, "Elliptic Curve cryptosystems," Math. Comp. 48, 1987, pp. 203-209. https://doi.org/10.1090/S0025-5718-1987-0866109-5
  2. G. Harper, A. Menezes, and S. Vanstone, "Public-key Cryptosystems with very small key length," Eurocrypto 92, Springer-Verlag. Balatonfured, Hungary, May 1992, pp. 163-172.
  3. C.-H. Kim, S.-H. Oh, J.-I. Lim, K.-S. Suh, and J.-C. Yoon, "Operations in finite fields using modified method," J. Korea Institute of Information Security and Cryptography, vol. 8, no. 2, 1998, pp. 27-36.
  4. H. Cohen, A Course in Computational Algebraic Number Theory. New York : Springer-Verlag, 2000.
  5. U.-S. Choi and S.-J. Cho, "Design of Binary Sequence with optimal Cross-correlation Values," J. of The Korea Institute of Electronic Communication Sciences, vol. 6, no. 4, 2011, pp. 539-544,
  6. H.-D. Kim, S.-J. Cho, M.-J. Kwon, and H.-J. An, "A study on the cross-correlation function of extended Zeng sequences," The J. of The Korea Institute of Electronic Communication Sciences, vol. 7, no. 1, 2012, pp. 61-67.
  7. T. Itoh, O. Teechal, and S. Tsujii, "A fast algorithm for computing multiplicative inverse in $GF(2^n)$ using normal bases," J. Soc. Electro. Comm.(Japan), vol. 44, 1986, pp. 31-36.
  8. Y. Kim, "A Fast Multiplier of Composite fields over finite fields," J. of The Korea Institute of Electronic Communication Sciences, vol. 6, no. 3, 2011, pp. 389-395.
  9. G. Agnew, T. Beth, B. Mullin, and S. Vanstone, "Arithmetic Operations in $GF(2^n)$," J. Cryptology, vol. 6, 1993, pp. 3-13. https://doi.org/10.1007/BF02620228
  10. Y. Kim, "Fast Sequential Optimal normal Bases Multipliers over finite fields," J. of The Korea Institute of Electronic Communication Sciences, vol. 8, no. 8, 2013, pp. 1207-1212. https://doi.org/10.13067/JKIECS.2013.8.8.1207
  11. U.-S. Choi, S.-J. Cho, and S.-H. Kwon, "Analysis of Cross Correlation of Extended Non-linear Binary Sequences," J. of The Korea Institute of Electronic Communication Sciences, vol. 7, no. 2, 2012, pp. 263-269.