DOI QR코드

DOI QR Code

Status and Prospect of Unmanned, Global Ocean Observations Network

글로벌 무인해양관측 네트워크 현황과 전망

  • Nam, Sunghyun (CASPO, Scripps Institution of Oceanography/UCSD) ;
  • Kim, Yun-Bae (Ulleungdo-Dokdo Ocean Research Station, East Sea Research Institute, Korea Institute of Ocean Science and Technology) ;
  • Park, Jong Jin (Department of Oceanography, Kyungpook National University) ;
  • Chang, Kyung-Il (RIO/School of Earth and Environmental Sciences, Seoul National University)
  • 남성현 (스크립스 해양연구소 기후/기상/물리해양학과) ;
  • 김윤배 (한국해양과학기술원 동해연구소 울릉도-독도해양연구기지) ;
  • 박종진 (경북대학교 해양학과) ;
  • 장경일 (서울대학교 지구환경과학부)
  • Received : 2013.10.10
  • Accepted : 2014.08.06
  • Published : 2014.08.28

Abstract

We introduce status and prospect of increasingly utilizing, unmanned, global ocean observing systems, and the global network to integrate, coordinate, and manage the systems. Platforms of the ocean observing system are diversified in order to resolve/monitor the variability occurring at multiple scales in both three-dimensional space and time. Here purpose, development history, and current status of the systems in two kinds - mobile (surface drifter, subsurface float, underwater glider) and fixed platforms (surface and subsurface moorings, bottom mounts), are examined and the increased future uses to produce synergies are envisioned. Simultaneous use of various mobile and fixed platforms is suggested to more effectively design the observing system, with an example of the NSF-funded OOI (Ocean Observations Initiative) program. Efforts are suggested 1) to fill the data gap existing in the deep sea and the Southern Ocean, and toward 2) new global network for oceanic boundary currents, 3) new technologies for existing and new sensors including biogeochemical, acoustic, and optical sensors, 3) data standardization, and 4) sensor calibration and data quality control.

급격히 증가하고 있는 무인해양관측 체계들의 현황을 글로벌 관점에서 조명하고, 이를 범국가적 차원에서 통합, 조정, 관리하기 위한 네트워크에 대해 고찰하였다. 3차원 시공간적으로 변동이 심한 해양환경을 관측/감시하기 위해서 무인해양관측 플랫폼들은 점차 다양화되고 있는데, 여기서는 이동형(표층 뜰개, 중층 플로트, 수중 글라이더)과 고정형(표층 및 수중 계류선, 바닥장착형 관측)으로 구분하여 각각의 목적, 역사, 현황을 조사하고, 향후 변화를 전망했다. 이들을 활용하여 글로벌 해양관측체계에 기여하고 있는 대표적인 고정형과 이동형 무인해양관측 네트워크(ARGO와 OceanSITES) 프로그램들의 현황에 대해서 알아보고, 글로벌 해양관측/모니터링 체계를 위한 시너지 효과를 창출하기 위한 운용 및 활용 증가를 전망했다. 마지막으로 더욱 효과적인 해양관측/모니터링 체계를 설계하기 위해 다종의 플랫폼을 동시에 사용하는 것을 제안하였고, 그 대표적인 예로 미 국립과학재단의 OOI(Ocean Observatories Initiative) 프로그램을 소개하였다. 아울러 심해 및 남반구와 같이 글로벌 관점에서 존재하는 자료의 틈을 줄여나가기 위한 노력과 글로벌 경계류 관측 네트워크와 같은 새로운 해양관측 네트워크를 위한 노력, 그리고 생지화학/음향/광학 센서들을 포함한 센서 기술들의 개발 노력과, 자료의 표준화 및 센서 검/교정을 위한 노력에 대한 제언을 추가하였다.

Keywords

References

  1. Andres, M., M. Wimbush, J.-H. Park, K.-I. Chang, B.-H. Lim, D.R. Watts, H. Ichikawa, and W.J. Teague, 2008. Observations of Kuroshio flow variations in the East China Sea. J. Geophys. Res., 113, doi:10.1029/2007JC004200.
  2. Bishop, J.K.B., R.E. Davis, and J.T. Sherman, 2002. Robotic observations of dust-storm enhancement of carbon biomass in the north Pacific. Science, 298: 817-821. https://doi.org/10.1126/science.1074961
  3. Chang, K.-I., K. Kim, Y.-B. Kim, W.J. Teague, J.C. Lee and J.-H. Lee, 2009. Deep flow and transport through the Ulleung Interplain Gap in the southwestern East/Japan Sea. Deep-Sea Res. I, 56: 61-72. https://doi.org/10.1016/j.dsr.2008.07.015
  4. Davis, R.E., D.C. Webb, L.A. Regier and J. Dufour, 1992: The Autonomous Lagrangian Circulation Explorer (ALACE). J. Atmos. Ocean. Tech., 9: 264-285. https://doi.org/10.1175/1520-0426(1992)009<0264:TALCE>2.0.CO;2
  5. D'Asaro, E.A., D.M. Farmer, J.T. Osse, and G.T. Dairiki, 1996. A Lagrangian float. J. Atmos. Oceanic Technol., 13: 1230-1246. https://doi.org/10.1175/1520-0426(1996)013<1230:ALF>2.0.CO;2
  6. Donohue, K.A., D.R. Watts, K.L. Tracey, A.D. Greene and M. Kennelly, 2010. Mapping circulation in the Kuroshio Extension with an array of Current and Pressure recording Inverted Echo Sounders. J. Atmos. Oceanic Technol., 27: 507-527. https://doi.org/10.1175/2009JTECHO686.1
  7. Emerson, S., C. Stump, B. Johnson, and D.M.Karl, 2002. In-situ determination of oxygen and nitrogen dynamics in the upper ocean. Deep-Sea Res. I, 49: 941-952. https://doi.org/10.1016/S0967-0637(02)00004-3
  8. Eriksen, C.C., Osse, T.J., Light, R.D., Wen, T., Lehman, T.W., Sabin, P.L., Ballard, J.W., Chiodi, A.M., 2001. Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J. Ocean. Eng., 26(4): 424-436. https://doi.org/10.1109/48.972073
  9. Gould, J. 2005. From Swallow floats to Argo: The development of neutrally buoyant floats. Deep-Sea Res. II 52/3-4: 529-543.
  10. Grandi, V., A. Carta, L. Gualdesi, F. de Strobel and S. Fioravanti, 2005. An overview of SEPTR: Shallow water environmental profiler in a trawl-safe real-time configuration. In: Proceedings of the IEEE/OES Eighth Working Confernece on Current Measurement Technology, IEEE, 142-146.
  11. Hwang, S.-C., K.-I. Chang, M.-S. Suk, and Y.-S. Jang, 2002. Moored current observation: Shallow-water mooring. The Sea - J. Korean Soc. Oceanogr., 7(4): 286-303.
  12. Kawatate, K., T. Miita, Y. Ouchi and S. Mizuno, 1988. A report on failures of current meter moorings set east of Tsushima Island from 1983 to 1987. Prog. Oceanogr., 21: 319-327. https://doi.org/10.1016/0079-6611(88)90011-0
  13. Kery, S. and J.D. Irish, 1996. Trawl resistant bottom mounted instrumentation: Developments and results to date. In: Proceedings of the OCEANS '96. MTS/IEEE, Prospects for the 21st Century Conference, 640-645.
  14. Kim, K., S.J. Lyu, Y.-G. Kim, B.H. Choi, K. Taira, H.T. Perkins, W.J. Teague, and J.W. Book, 2004. Monitoring volume transport through measurement of cable voltage across the Korea Strait. J. Atmos. Oceanic Technol., 21: 671-682. https://doi.org/10.1175/1520-0426(2004)021<0671:MVTTMO>2.0.CO;2
  15. Kim, Y.H., Y.-B. Kim, K. Kim, K.-I. Chang, S.J. Lyu, Y.-K. Cho and W.J. Teague, 2006. Seasonal variation of the Korea Strait Bottom Cold Water and its relation to the bottom current. Geophys. Res. Lett., 33, doi:10.1029/2006GL027625.
  16. KIOST (Korea Institute of Marine Science and Technology), 2012. Study on development of multi-purpose submarine cable between Ulleung-do and Dokdo. Report of Korea Institute of Marine Science and Technology. BSPG47840-10183-7 (in Korean).
  17. Lumpkin, R. and Z. Garraffo, 2005. Evaluating the decomposition of tropical Atlantic drifter observations. J. Atmos. Oceanic Technol., 22(9): 1403-1415. https://doi.org/10.1175/JTECH1793.1
  18. Lumpkin, R. and M. Pazos, 2006. Measuring surface currents with Surface Velocity Program drifters: the instrument, its data, and some recent results. In: Chapter two of Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics (LAPCOD), edited by A. Griffa, A. D. Kirwan, A. J. Mariano, T. Ozgokmen, and T. Rossby.
  19. Lyu, S.J. and K. Kim, 2005. Subinertial to interannual transport variations in the Korea Strait and their possible mechanisms, J. Geophys. Res., 110, C12016, doi:10.1029/2004JC002651.
  20. Maximenko, N., P.P. Niiler, L. Centurioni, M.-H. Rio, O. Melnichenko, D. Chambers, V. Zlotnicki and B. Galperin, 2009. Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Ocean. Tech., 26(9): 1910-1919. https://doi.org/10.1175/2009JTECHO672.1
  21. Meinen, C.S. and D.R. Watts, 2000. Vertical structure and transport on a transect across the North Atlantic Current near 42 N: Time series and mean. J. Geophys. Res., 105: 21,869-21,892. https://doi.org/10.1029/2000JC900097
  22. Nam, S., G. Kim, K.-R. Kim, K. Kim, L. Oh, K.-W. Kim, H. Ossi, and Y.-G. Kim, 2005. Application of real-time monitoring buoy systems for physical and biogeochemical parameters in the coastal ocean around the Korean peninsula, Mar. Tech. Soc. J., 39(2): 54-64.
  23. Niiler, P.P., R.E. Davis and H.J. White, 1987. Water-following characteristics of a mixed layer drifter, Deep-Sea Res. Part a-Oceanographic Research Papers, 34(11): 1867-1881. https://doi.org/10.1016/0198-0149(87)90060-4
  24. Niiler, P.P. and J.D. Paduan, 1995. Wind-driven motions in the northeast Pacific as measured by Lagrangian drifters. J. Phys. Oceanogr., 25(11): 2819-2830. https://doi.org/10.1175/1520-0485(1995)025<2819:WDMITN>2.0.CO;2
  25. Niiler, P.P., 2001. The world ocean surface circulation. In: Ocean Circulation and Climate, edited by G. Siedler, J. Church and J. Gould, Academic Press, Volume 77 of International Geophysics Series, 193-204.
  26. Park, J.J., K. Kim, B.A. King, and S.C. Riser, 2005. An advanced method to estimate deep currents from profiling floats. J. Atmos. Oceanic Technol., 22: 1294-1304. https://doi.org/10.1175/JTECH1748.1
  27. Park, J.J., 2013. Underwater glider: Its applicability in the East/Japan Sea. Ocean and Polar Res., 35(2): 107-121. doi:10.4217/OPR.2013.35.2.10.
  28. Park, Y.-S., S.-J. Lee, Y.-K. Lee, S.-K. Jung, N.-D. Jang, and H.-W. Lee, 2012. Report of East Sea crossing by underwater glider. The Sea, 17(2): 130-137. https://doi.org/10.7850/jkso.2012.17.2.130
  29. Perkins, H.T., F. de Strobel and L. Gualdesi, 2000a. The Barny sentinel trawl-resistant ADCP bottom mount: Design, testing, and application. IEEE J. Ocean. Engin., 25: 430-436. https://doi.org/10.1109/48.895350
  30. Perkins, H.T., W.J. Teague, G.A. Jacobs, K.I. Chang and M.-S. Suk, 2000b. Currents in Korea-Tsushima Strait during summer 1999. Geophys. Res. Lett., 27: 3033-3036. https://doi.org/10.1029/2000GL011454
  31. Perkins, H.T., J.W. Book, F. de Strobel, L. Gualdesi, E. Jarosz and W.J. Teague, 2009. The Barny Program: fourteen years of NURCNRL collaboration. NURC Technical Report, NURC-SP-2009-001, 31 pp.
  32. Pinkel, R., M.A. Goldin, J.A. Smith, O.M. Sun, A.A. Aja, M.N. Bui, and T. Hughen, 2011. The wirewalker: A vertically profiling instrument carrier powered by ocean waves. J. Atmos. Oceanic Technol., 28: 426-435. https://doi.org/10.1175/2010JTECHO805.1
  33. Price, J.F., 1996. Bobber floats measure currents' vertical component in the Subduction Experiment. Oceanus, 39: 26.
  34. Rossby, T., 1969. On monitoring depth variations of the main thermocline acoustically. J. Geophys. Res., 74: 5542-5546. https://doi.org/10.1029/JC074i023p05542
  35. Rossby, T., J. Fontaine and E.C. Carter, Jr., 1994. The f/h float - measuring stretching vorticity directly, Deep-Sea Res., 41: 975-992. https://doi.org/10.1016/0967-0637(94)90014-0
  36. Rudnick, D.L., R.E. Davis, C.C. Eriksen, D.M. Fratantoni, and M.J. Perry, 2004. Underwater gliders for ocean research. Mar. Tech. Soc. J., 38: 73-84. https://doi.org/10.4031/002533204787522703
  37. Send, U., R. Davis, J. Fischer, S. Imawaki, W. Kessler, C. Meinen, B. Owens, D. Roemmich, T. Rossby, D. Rudnick, J. Toole, S. Wijffels, and L. Beal, 2009. A global boundary current circulation observing network. Ocean Obs. 09 Community White Paper.
  38. Send, U., G. Fowler, G. Siddall, B. Beanlands, M. Pittman, C. Waldmann, J. Karstensen, and. R. Lampitt, 2013. SeaCycler: A moored open-ocean profiling system for the upper ocean in extended selfcontained deployments. J. Atmos. Oceanic Technol., 30(7): 1555-1565. https://doi.org/10.1175/JTECH-D-11-00168.1
  39. Sherman, J., R.E. Davis, W.B. Owens, and J. Valdes, 2001. The autonomous underwater glider "Spray". IEEE J. Oceanic Eng., 26: 437-446. https://doi.org/10.1109/48.972076
  40. Stommel, H., 1955. Direct measurement of subsurface currents. Deepsea Res., 2(4): 284-285.
  41. Stommel, H., 1989. Why we are oceanographers. Oceanography, 2(2): 48-54.
  42. Swallow, J.C., 1955. A neutrally-buoyant float for measuring deep currents. Deep-Sea Res., 3(1): 74-81. https://doi.org/10.1016/0146-6313(55)90037-X
  43. Sybrandy, A.L. and P.P. Niiler, 1991. WOCE/TOGA Lagrangian drifter construction manual. WOCE Rep. 63, SOI Ref. 91/6, 58pp, Scripps Inst. of Oceanogr., La Jolla, California.
  44. Watts, D.R. and H.T. Rossby, 1977. Measuring dynamic heights with inverted echo sounders: Results from MODE, J. Phys. Oceanogr., 7: 345-358. https://doi.org/10.1175/1520-0485(1977)007<0345:MDHWIE>2.0.CO;2
  45. Watts, D.R. and M. Wimbush, 1981. Sea surface height and thermocline depth variations measured from the sea floor. In: Proceedings of the International Symposium on Acoustic Remote Sensing of the Atmosphere and Oceans, 33-47.
  46. Webb, D.C., P.J. Simonetti, and C.P. Jones, 2001. SLOCUM: An underwater glider propelled by environmental energy. IEEE J. Oceanic Eng. 26: 447-452. https://doi.org/10.1109/48.972077
  47. Whalen, C.B., L.D. Talley, and J.A. Mackinnon, 2012. Spatial and temporal variability of global ocean mixing inferred from argo proles. Geophys. Res. Lett., 39, doi:10.1029/2012GL18612.
  48. Zenk, W., A. Pinck, S. Becker, and P. Tillier, 2000. The float park: A new tool for a cost-effective collection of Lagrangian time series with dual release RAFOS floats. J. Atmos. Oceanic Techno., 17: 1439-1443. https://doi.org/10.1175/1520-0426(2000)017<1439:TFPANT>2.0.CO;2

Cited by

  1. Monthly Variability of Sea Water Temperature and Salinity Observed at the Dokdo Real-time Ocean Buoy between 2009 and 2014 : Focus on the Advections of Sea Water vol.32, pp.3, 2014, https://doi.org/10.13000/jfmse.2020.6.32.3.791