DOI QR코드

DOI QR Code

Parthenolide inhibits osteoclast differentiation and bone resorbing activity by down-regulation of NFATc1 induction and c-Fos stability, during RANKL-mediated osteoclastogenesis

  • Kim, Ju-Young (Imaging Science-based Lung and Bone Diseases Research Center,) ;
  • Cheon, Yoon-Hee (Department of Anatomy, Wonkwang University School of Medicine) ;
  • Yoon, Kwon-Ha (Imaging Science-based Lung and Bone Diseases Research Center,) ;
  • Lee, Myeung Su (Imaging Science-based Lung and Bone Diseases Research Center,) ;
  • Oh, Jaemin (Imaging Science-based Lung and Bone Diseases Research Center,)
  • Received : 2013.09.12
  • Accepted : 2013.11.28
  • Published : 2014.08.31

Abstract

Parthenolide, a natural product derived from Feverfew, prevents septic shock and inflammation. We aimed to identify the effects of parthenolide on the RANKL (receptor activator of $NF-{\kappa}B$ ligand)-induced differentiation and bone resorbing activity of osteoclasts. In this study, parthenolide dose-dependently inhibited RANKL-mediated osteoclast differentiation in BMMs, without any evidence of cytotoxicity and the phosphorylation of p38, ERK, and $I{\kappa}B$, as well as $I{\kappa}B$ degradation by RANKL treatment. Parthenolide suppressed the expression of NFATc1, OSCAR, TRAP, DC-STAMP, and cathepsin K in RANKL-treated BMMs. Furthermore, parthenolide down-regulated the stability of c-Fos protein, but could not suppress the expression of c-Fos. Overexpression of NFATc1 and c-Fos in BMMs reversed the inhibitory effect of parthenolide on RANKL-mediated osteoclast differentiation. Parthenolide also inhibited the bone resorbing activity of mature osteoclasts. Parthenolide inhibits the differentiation and bone-resolving activity of osteoclast by RANKL, suggesting its potential therapeutic value for bone destructive disorders associated with osteoclast-mediated bone resorption.

Keywords

References

  1. Bible, J. E., Wegner, A., McClure, J. M., Kadakia, R. J., Richards, J. E., Bauer, J. M. and Mir, H. R. (2013) One-year mortality after acetabular fractures in elderly patients presenting to a level-one trauma center. J. Orthop. Trauma [Epub ahead of print].
  2. Wang, C. B., Lin, C. F., Liang, W. M., Cheng, C. F., Chang, Y. J., Wu, H. C., Wu, T. N. and Leu, T. H. (2013) Excess mortality after hip fracture among the elderly in Taiwan: A nationwide population-based cohort study. Bone 56, 147-153. https://doi.org/10.1016/j.bone.2013.05.015
  3. Quinn, J. M., Elliott, J., Gillespie, M. T. and Martin, T. J. (1998) A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology 139, 4424-4427. https://doi.org/10.1210/endo.139.10.6331
  4. Lee, T. H., Fevold, K. L., Muguruma, Y., Lottsfeldt, J. L. and Lee, M. Y. (1994) Relative roles of osteoclast colony-stimulating factor and macrophage colony-stimulating factor in the course of osteoclast development. Exp. Hematol. 22, 66-73.
  5. Wong, B. R., Josien, R., Lee, S. Y., Vologodskaia, M., Steinman, R. M. and Choi, Y. (1998) The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J. Biol. Chem. 273, 28355-28359. https://doi.org/10.1074/jbc.273.43.28355
  6. Matsumoto, M., Sudo, T., Saito, T., Osada, H. and Tsujimoto, M. (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J. Biol. Chem. 275, 31155-31161. https://doi.org/10.1074/jbc.M001229200
  7. Wong, B. R., Besser, D., Kim, N., Arron, J. R., Vologodskaia, M., Hanafusa, H. and Choi, Y. (1999) TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol. Cell 4, 1041-1049. https://doi.org/10.1016/S1097-2765(00)80232-4
  8. Matsuo, K., Galson, D. L., Zhao, C., Peng, L., Laplace, C., Wang, K. Z., Bachler, M. A., Amano, H., Aburatani, H., Ishikawa, H. and Wagner, E. F. (2004) Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J. Biol. Chem. 279, 26475-26480. https://doi.org/10.1074/jbc.M313973200
  9. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E. F., Mak, T. W., Kodama, T. and Taniguchi, T. (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  10. Koyama, T., Nakajima, C., Nishimoto, S., Takami, M., Woo, J. T. and Yazawa, K. (2012) Suppressive effects of the leaf of Terminalia catappa L. on osteoclast differentiation in vitro and bone weight loss in vivo. J. Nutr. Sci. Vitaminol. 58, 129-135. https://doi.org/10.3177/jnsv.58.129
  11. Zhao, Y., Huai, Y., Jin, J., Geng, M. and Li, J. X. (2011) Quinoxaline derivative of oleanolic acid inhibits osteoclastic bone resorption and prevents ovariectomy-induced bone loss. Menopause 18, 690-697. https://doi.org/10.1097/gme.0b013e3181fd7f4b
  12. Yip, K. H., Zheng, M. H., Feng, H. T., Steer, J. H., Joyce, D. A. and Xu, J. (2004) Sesquiterpene lactone parthenolide blocks lipopolysaccharide-induced osteolysis through the suppression of NF-kappaB activity. J. Bone Miner. Res. 19, 1905-1916. https://doi.org/10.1359/JBMR.040919
  13. Knopp-Sihota, J. A., Cummings, G. G., Homik, J. and Voaklander, D. (2013) The association between serious upper gastrointestinal bleeding and incident bisphosphonate use: a population-based nested cohort study. BMC Geriatr. 13, 36. https://doi.org/10.1186/1471-2318-13-36
  14. Judd, H. L., Meldrum, D. R., Deftos, L. J. and Henderson, B. E. (1983) Estrogen replacement therapy: indications and complications. Ann. Intern. Med. 98, 195-205. https://doi.org/10.7326/0003-4819-98-2-195
  15. Franzoso, G., Carlson, L., Xing, L., Poljak, L., Shores, E. W., Brown, K. D., Leonardi, A., Tran, T., Boyce, B. F. and Siebenlist, U. (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 11, 3482-3496. https://doi.org/10.1101/gad.11.24.3482
  16. Soysa, N. S., Alles, N., Weih, D., Lovas, A., Mian, A. H., Shimokawa, H., Yasuda, H., Weih, F., Jimi, E., Ohya, K. amd Aoki, K. (2010) The pivotal role of the alternative NF-kappaB pathway in maintenance of basal bone homeostasis and osteoclastogenesis. J. Bone Miner. Res. 25, 809-818.
  17. Matsumoto, M., Sudo, T., Maruyama, M., Osada, H. and Tsujimoto, M. (2000) Activation of p38 mitogen-activated protein kinase is crucial in osteoclastogenesis induced by tumor necrosis factor. FEBS Lett. 486, 23-28. https://doi.org/10.1016/S0014-5793(00)02231-6
  18. Kim, J. H., Kim, K., Jin, H. M., Youn, B. U., Song, I., Choi, H. S. and Kim, N. (2008) Upstream stimulatory factors regulate OSCAR gene expression in RANKL-mediated osteoclast differentiation. J. Mol. Biol. 383, 502-511. https://doi.org/10.1016/j.jmb.2008.08.036
  19. Lange, A. W. and Yutzey, K. E. (2006) NFATc1 expression in the developing heart valves is responsive to the RANKL pathway and is required for endocardial expression of cathepsin K. Dev. Biol. 292, 407-417. https://doi.org/10.1016/j.ydbio.2006.01.017
  20. Kim, K., Lee, S. H., Kim, J. H., Choi, Y. and Kim, N. (2008) NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22, 176-185. https://doi.org/10.1210/me.2007-0237
  21. Saftig, P., Hunziker, E., Wehmeyer, O., Jones, S., Boyde, A., Rommerskirch, W., Moritz, J. D., Schu, P. and von Figura, K. (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 95, 13453-13458. https://doi.org/10.1073/pnas.95.23.13453
  22. Yeon, J. T., Choi, S. W., Park, K. I., Choi, M. K., Kim, J. J., Youn, B. S., Lee, M. S. and Oh, J. (2012) Glutaredoxin2 isoform b (Glrx2b) promotes RANKL-induced osteoclastogenesis through activation of the p38-MAPK signaling pathway. BMB Rep. 45, 171-176. https://doi.org/10.5483/BMBRep.2012.45.3.171

Cited by

  1. Cyclopropanyldehydrocostunolide LJ attenuates high glucose-induced podocyte injury by suppressing RANKL/RANK-mediated NF-κB and MAPK signaling pathways vol.30, pp.5, 2016, https://doi.org/10.1016/j.jdiacomp.2016.03.013
  2. Leonurine hydrochloride inhibits osteoclastogenesis and prevents osteoporosis associated with estrogen deficiency by inhibiting the NF-κB and PI3K/Akt signaling pathways vol.75, 2015, https://doi.org/10.1016/j.bone.2015.02.017
  3. Akermanite bioceramics promote osteogenesis, angiogenesis and suppress osteoclastogenesis for osteoporotic bone regeneration vol.6, pp.1, 2016, https://doi.org/10.1038/srep22005
  4. A single intraperitoneal injection of bovine fetuin-A attenuates bone resorption in a murine calvarial model of particle-induced osteolysis vol.105, 2017, https://doi.org/10.1016/j.bone.2017.09.006
  5. Harpagoside Inhibits RANKL-Induced Osteoclastogenesis via Syk-Btk-PLCγ2-Ca2+Signaling Pathway and Prevents Inflammation-Mediated Bone Loss vol.78, pp.9, 2015, https://doi.org/10.1021/acs.jnatprod.5b00233
  6. Arctigenin inhibits RANKL-induced osteoclastogenesis and hydroxyapatite resorption in vitro and prevents titanium particle-induced bone loss in vivo pp.07302312, 2018, https://doi.org/10.1002/jcb.27815
  7. Pharmacological Inhibition of the Skeletal IKKβ Reduces Breast Cancer-Induced Osteolysis vol.103, pp.2, 2018, https://doi.org/10.1007/s00223-018-0406-4