Abstract
The problem studied in this paper is the channel routing problem to assign points with p colors on the upper row of the channel to points on the lower row in order to minimize its density. The case that the points on the upper row has an identical color or only two colors is studied in [1, 2]. This paper generalizes that to the points with p colors. First, we consider the problem to determine whether there is an assignment with density less than or equal to d, when an arbitrary d is given. We show that the problem is solved in O(p(n+m)log(n+m)) time. Using this result, we resolve the problem to fine an assignment with a minimum density.
본 논문에서 다루는 문제는 채널의 위쪽 행에 위치한 P가지 색을 가지는 점들을 아래쪽 행의 점들에 밀도가 최소가 되도록 연결하는 채널 라우팅 문제이다. 위쪽 행에 위치한 점들이 동일한 색을 가지거나 단지 2가지 색을 가지는 경우는 [1, 2]에서 다루어졌다. 본 논문에서는 P가지 색을 가지는 경우로 일반화한다. 우선 임의의 값 d가 주어질 때, d이하의 밀도를 가지는 할당이 존재하는지 결정하는 문제를 O(p(n+m)log(n+m))시간에 풀 수 있음을 보인다. 이를 이용해서 최소 밀도 값의 할당을 찾는 문제를 해결할 수 있음을 보인다.