The Regulatory Role of Chenodeoxycholic Acid on the Proliferation of Osteoclast Precursor Cells

Chenodeoxycholic Acid에 의한 파골전구세포의 증식 조절

  • Received : 2014.02.13
  • Accepted : 2014.04.28
  • Published : 2014.06.30

Abstract

We investigated the effect of Chenodeoxycholic acid (CDCA) on the proliferation of osteoclast precursor cells. CDCA decreased the proliferation of osteoclast precursor cells through the control of cell cycle regulators such as cyclin D1, p21 and p27. When we checked the signaling pathway, CDCA decreased Erk activation in osteoclast precursor cells. Furthermore, two bile acid receptors, FXR and TGR5, were involved in the suppressive effect of CDCA. Taken together, this study suggested that bile acid plays an important role in the proliferation of osteoclast precursor cells.

Keywords

References

  1. Takayanagi H. : Osteoimmunology: shared mechanismsand crosstalk between the immun and bone systems. Nat. Rev. Immunol. 7, 292 (2007). https://doi.org/10.1038/nri2062
  2. Takahashi, N., Akatsu, T., Udagawa, N., Sasaki, T., Yamaguchi, A., Moseley, J. M., Martin, T. J. and Suda, T. : Osteoblastic cells are involved in osteoclast formation. Endocrinology 123, 2600 (1988). https://doi.org/10.1210/endo-123-5-2600
  3. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M. T. and Martin, T. J. : Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345 (1999). https://doi.org/10.1210/edrv.20.3.0367
  4. Humphrey, M. B., Lanier, L. L. and Nakamura, M. C. : Role of ITAM-containing adaptor proteins and their receptors in the immune system and bone. Immunol. Rev. 208, 50 (2005). https://doi.org/10.1111/j.0105-2896.2005.00325.x
  5. Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. and Schoonjans, K. : Targeting bile acid signalling for metabolic diseases. Nat. Rev. Drug. Discov. 7, 678 (2008). https://doi.org/10.1038/nrd2619
  6. Huang, L., Sun, Y., Zhu, H., Zhang, Y., Xu, J. and Shen, Y. M. : Synthesis and antimicrobial evaluation of bile acid tridentate conjugates. Steroids 74, 701 (2009). https://doi.org/10.1016/j.steroids.2009.03.005
  7. Parks, D. J., Blanchard, S. G., Bledsoe, R. K., Chandra, G., Consler, T. G., Kliewer, S. A., Stimmel, J. B., Willson, T. M., Zavacki, A. M., Moore, D. D. and Lehmann, J. M. : Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365 (1999). https://doi.org/10.1126/science.284.5418.1365
  8. Masishima, M., Okamoto, A. Y., Repa, J. J., Tu, H., Learned, R. M., Luk, A., Hull, M. V., Lustig, K. D., Mangelsdorf, D. J. and Shan, B. : Identification of a nuclear receptor for bile acid. Science 284, 1362 (1999). https://doi.org/10.1126/science.284.5418.1362
  9. Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. and Steals, B. : Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147 (2009). https://doi.org/10.1152/physrev.00010.2008
  10. Cho, S. W., An, J. H., Park, H., Yang, J. Y., Choi, H. J., Kim, S. W., Park, Y. J., Kim, S. Y., Yim, M., Baek, W. Y., Kim, J. E. and Shin, C. S. : Positive regulation of osteogenesis by bile acid through FXR. J. Bone. Miner. Res. 28, 2109 (2013). https://doi.org/10.1002/jbmr.1961
  11. Bortolini, O., Fantin, G., Fogagnolo, M., Rossetti, S., Maiuolo, L., Di Pompo, G., Avnet, S. and Granchi, D. : Synthesis, characterization and biological activity of hydroxyl-bisphosphonic analogs of bile acids. Eur. J. Med. Chem. 52, 221 (2012). https://doi.org/10.1016/j.ejmech.2012.03.020
  12. Wong, S. C., Chan, J. K., Lee, K. C. and Hsiao, W. L. : Differential expression of p16/p21/p27 and cyclin D1/D3, and their relationships to cell proliferation, apoptosis, and tumour progression in invasive ductal carcinoma of the breast. J. Pathol. 194, 35 (2001). https://doi.org/10.1002/path.838
  13. Stacey, D. W. : Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr. Opin. Cell. Biol. 15, 158 (2003). https://doi.org/10.1016/S0955-0674(03)00008-5
  14. Coqueret, O. : New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell. Biol. 13, 65 (2003). https://doi.org/10.1016/S0962-8924(02)00043-0
  15. Thomas, F. F., Christoph, P. H., Lisa, S., Grigoriy, A. S. and Chizuru, S. : PI3K/Akt and apoptosis: size matters. Oncogene 22, 8983 (2003). https://doi.org/10.1038/sj.onc.1207115
  16. Jennifer, M. C., Tim, D. E., Ryan, D. R., Yijie, W., Nabendu, P., Amit, M. and Clay, B. M. : M-CSF Signals through the MAPK/ERK pathway via Sp1 to induce VEGF production and induces angiogenesis in vivo. PLoS ONE 3, e3405 (2008). https://doi.org/10.1371/journal.pone.0003405